1,137 research outputs found

    A Spiking Neural Network Based Cortex-Like Mechanism and Application to Facial Expression Recognition

    Get PDF
    In this paper, we present a quantitative, highly structured cortex-simulated model, which can be simply described as feedforward, hierarchical simulation of ventral stream of visual cortex using biologically plausible, computationally convenient spiking neural network system. The motivation comes directly from recent pioneering works on detailed functional decomposition analysis of the feedforward pathway of the ventral stream of visual cortex and developments on artificial spiking neural networks (SNNs). By combining the logical structure of the cortical hierarchy and computing power of the spiking neuron model, a practical framework has been presented. As a proof of principle, we demonstrate our system on several facial expression recognition tasks. The proposed cortical-like feedforward hierarchy framework has the merit of capability of dealing with complicated pattern recognition problems, suggesting that, by combining the cognitive models with modern neurocomputational approaches, the neurosystematic approach to the study of cortex-like mechanism has the potential to extend our knowledge of brain mechanisms underlying the cognitive analysis and to advance theoretical models of how we recognize face or, more specifically, perceive other people’s facial expression in a rich, dynamic, and complex environment, providing a new starting point for improved models of visual cortex-like mechanism

    Deep Spiking Neural Network for Video-based Disguise Face Recognition Based on Dynamic Facial Movements

    Get PDF
    With the increasing popularity of social media andsmart devices, the face as one of the key biometrics becomesvital for person identification. Amongst those face recognitionalgorithms, video-based face recognition methods could make useof both temporal and spatial information just as humans do toachieve better classification performance. However, they cannotidentify individuals when certain key facial areas like eyes or noseare disguised by heavy makeup or rubber/digital masks. To thisend, we propose a novel deep spiking neural network architecturein this study. It takes dynamic facial movements, the facial musclechanges induced by speaking or other activities, as the sole input.An event-driven continuous spike-timing dependent plasticitylearning rule with adaptive thresholding is applied to train thesynaptic weights. The experiments on our proposed video-baseddisguise face database (MakeFace DB) demonstrate that theproposed learning method performs very well - it achieves from95% to 100% correct classification rates under various realisticexperimental scenario

    A Brain-Inspired Multi-Modal Perceptual System for Social Robots: An Experimental Realization

    Get PDF
    We propose a multi-modal perceptual system that is inspired by the inner working of the human brain; in particular, the hierarchical structure of the sensory cortex and the spatial-temporal binding criteria. The system is context independent and can be applied to many on-going problems in social robotics, including but not limited to person recognition, emotion recognition, and multi-modal robot doctor to name a few. The system encapsulates the parallel distributed processing of real-world stimuli through different sensor modalities and encoding them into features vectors which in turn are processed via a number of dedicated processing units (DPUs) through hierarchical paths. DPUs are algorithmic realizations of the cell assemblies in neuroscience. A plausible and realistic perceptual system is presented via the integration of the outputs from these units by spiking neural networks. We will also discuss other components of the system including top-down influences and the integration of information through temporal binding with fading memory and suggest two alternatives to realize these criteria. Finally, we will demonstrate the implementation of this architecture on a hardware platform as a social robot and report experimental studies on the system

    Brain-Inspired Computing

    Get PDF
    This open access book constitutes revised selected papers from the 4th International Workshop on Brain-Inspired Computing, BrainComp 2019, held in Cetraro, Italy, in July 2019. The 11 papers presented in this volume were carefully reviewed and selected for inclusion in this book. They deal with research on brain atlasing, multi-scale models and simulation, HPC and data infra-structures for neuroscience as well as artificial and natural neural architectures

    Deep visual learning with spike-timing dependent plasticity

    Get PDF
    For most animal species, reliable and fast visual pattern recognition is vital for their survival. Ventral stream, a primary pathway within visual cortex, plays an important role in object representation and form recognition. It is a hierarchical system consisting of various visual areas, in which each visual area extracts different level of abstractions. It is known that the neurons within ventral stream use spikes to represent these abstractions. To increase the level of realism in a neural simulation, spiking neural network (SNN) is often used as the neural network model. From SNN point of view, the analog output values generated by traditional artificial neural network (ANN) can be considered as the average spiking firing rates. Unlike traditional ANN, SNN can not only use spiking rates but also specific spiking timing sequences to represent the structural information of the input visual stimuli, which greatly increases the distinguishability. To simulate the learning procedure of the ventral stream, various research questions need to be resolved. In most cases, traditional methods use winner-take-all strategy to distinguish different classes. However, such strategy works not well for overlapped classes within decision space. Moreover, neurons within ventral stream tends to recognize new input visual stimuli in a limited time window, which requires a fast learning procedure. Furthermore, within ventral stream, neurons receive continuous input visual stimuli and can only access local information during the learning procedure. However, most traditional methods use separated visual stimuli as the input and incorporate global information within the learning period. Finally, to verify the universality of the proposed SNN framework, it is necessary to investigate its classification performance for complex real world tasks such as video-based face disguise recognition. To address the above problems, a novel classification method inspired by the soft I winner-take-all strategy has been proposed firstly, in which each associated class will be assigned with a possibility and the input visual stimulus will be classified as the class with the highest possibility. Moreover, to achieve a fast learning procedure, a novel feed-forward SNN framework equipped with an unsupervised spike-timing dependent plasticity (STDP) learning rule has been proposed. Furthermore, an eventdriven continuous STDP (ECS) learning method has been proposed, in which two novel continuous input mechanisms have been used to generate a continuous input visual stimuli and a new event-driven STDP learning rule based on the local information has been applied within the training procedure. Finally, such methodologies have also been extended to the video-based disguise face recognition (VDFR) task in which human identities are recognized not just on a few images but the sequences of video stream showing facial muscle movements while speakin

    Benchmarking spike-based visual recognition: a dataset and evaluation

    Get PDF
    Today, increasing attention is being paid to research into spike-based neural computation both to gain a better understanding of the brain and to explore biologically-inspired computation. Within this field, the primate visual pathway and its hierarchical organisation have been extensively studied. Spiking Neural Networks (SNNs), inspired by the understanding of observed biological structure and function, have been successfully applied to visual recognition and classification tasks. In addition, implementations on neuromorphic hardware have enabled large-scale networks to run in (or even faster than) real time, making spike-based neural vision processing accessible on mobile robots. Neuromorphic sensors such as silicon retinas are able to feed such mobile systems with real-time visual stimuli. A new set of vision benchmarks for spike-based neural processing are now needed to measure progress quantitatively within this rapidly advancing field. We propose that a large dataset of spike-based visual stimuli is needed to provide meaningful comparisons between different systems, and a corresponding evaluation methodology is also required to measure the performance of SNN models and their hardware implementations. In this paper we first propose an initial NE (Neuromorphic Engineering) dataset based on standard computer vision benchmarks and that uses digits from the MNIST database. This dataset is compatible with the state of current research on spike-based image recognition. The corresponding spike trains are produced using a range of techniques: rate-based Poisson spike generation, rank order encoding, and recorded output from a silicon retina with both flashing and oscillating input stimuli. In addition, a complementary evaluation methodology is presented to assess both model-level and hardware-level performance. Finally, we demonstrate the use of the dataset and the evaluation methodology using two SNN models to validate the performance of the models and their hardware implementations. With this dataset we hope to (1) promote meaningful comparison between algorithms in the field of neural computation, (2) allow comparison with conventional image recognition methods, (3) provide an assessment of the state of the art in spike-based visual recognition, and (4) help researchers identify future directions and advance the field

    Unsupervised Heart-rate Estimation in Wearables With Liquid States and A Probabilistic Readout

    Full text link
    Heart-rate estimation is a fundamental feature of modern wearable devices. In this paper we propose a machine intelligent approach for heart-rate estimation from electrocardiogram (ECG) data collected using wearable devices. The novelty of our approach lies in (1) encoding spatio-temporal properties of ECG signals directly into spike train and using this to excite recurrently connected spiking neurons in a Liquid State Machine computation model; (2) a novel learning algorithm; and (3) an intelligently designed unsupervised readout based on Fuzzy c-Means clustering of spike responses from a subset of neurons (Liquid states), selected using particle swarm optimization. Our approach differs from existing works by learning directly from ECG signals (allowing personalization), without requiring costly data annotations. Additionally, our approach can be easily implemented on state-of-the-art spiking-based neuromorphic systems, offering high accuracy, yet significantly low energy footprint, leading to an extended battery life of wearable devices. We validated our approach with CARLsim, a GPU accelerated spiking neural network simulator modeling Izhikevich spiking neurons with Spike Timing Dependent Plasticity (STDP) and homeostatic scaling. A range of subjects are considered from in-house clinical trials and public ECG databases. Results show high accuracy and low energy footprint in heart-rate estimation across subjects with and without cardiac irregularities, signifying the strong potential of this approach to be integrated in future wearable devices.Comment: 51 pages, 12 figures, 6 tables, 95 references. Under submission at Elsevier Neural Network

    Multi-modal association learning using spike-timing dependent plasticity (STDP)

    Get PDF
    We propose an associative learning model that can integrate facial images with speech signals to target a subject in a reinforcement learning (RL) paradigm. Through this approach, the rules of learning will involve associating paired stimuli (stimulus–stimulus, i.e., face–speech), which is also known as predictor-choice pairs. Prior to a learning simulation, we extract the features of the biometrics used in the study. For facial features, we experiment by using two approaches: principal component analysis (PCA)-based Eigenfaces and singular value decomposition (SVD). For speech features, we use wavelet packet decomposition (WPD). The experiments show that the PCA-based Eigenfaces feature extraction approach produces better results than SVD. We implement the proposed learning model by using the Spike- Timing-Dependent Plasticity (STDP) algorithm, which depends on the time and rate of pre-post synaptic spikes. The key contribution of our study is the implementation of learning rules via STDP and firing rate in spatiotemporal neural networks based on the Izhikevich spiking model. In our learning, we implement learning for response group association by following the reward-modulated STDP in terms of RL, wherein the firing rate of the response groups determines the reward that will be given. We perform a number of experiments that use existing face samples from the Olivetti Research Laboratory (ORL) dataset, and speech samples from TIDigits. After several experiments and simulations are performed to recognize a subject, the results show that the proposed learning model can associate the predictor (face) with the choice (speech) at optimum performance rates of 77.26% and 82.66% for training and testing, respectively. We also perform learning by using real data, that is, an experiment is conducted on a sample of face–speech data, which have been collected in a manner similar to that of the initial data. The performance results are 79.11% and 77.33% for training and testing, respectively. Based on these results, the proposed learning model can produce high learning performance in terms of combining heterogeneous data (face–speech). This finding opens possibilities to expand RL in the field of biometric authenticatio

    Visual Cortex

    Get PDF
    The neurosciences have experienced tremendous and wonderful progress in many areas, and the spectrum encompassing the neurosciences is expansive. Suffice it to mention a few classical fields: electrophysiology, genetics, physics, computer sciences, and more recently, social and marketing neurosciences. Of course, this large growth resulted in the production of many books. Perhaps the visual system and the visual cortex were in the vanguard because most animals do not produce their own light and offer thus the invaluable advantage of allowing investigators to conduct experiments in full control of the stimulus. In addition, the fascinating evolution of scientific techniques, the immense productivity of recent research, and the ensuing literature make it virtually impossible to publish in a single volume all worthwhile work accomplished throughout the scientific world. The days when a single individual, as Diderot, could undertake the production of an encyclopedia are gone forever. Indeed most approaches to studying the nervous system are valid and neuroscientists produce an almost astronomical number of interesting data accompanied by extremely worthy hypotheses which in turn generate new ventures in search of brain functions. Yet, it is fully justified to make an encore and to publish a book dedicated to visual cortex and beyond. Many reasons validate a book assembling chapters written by active researchers. Each has the opportunity to bind together data and explore original ideas whose fate will not fall into the hands of uncompromising reviewers of traditional journals. This book focuses on the cerebral cortex with a large emphasis on vision. Yet it offers the reader diverse approaches employed to investigate the brain, for instance, computer simulation, cellular responses, or rivalry between various targets and goal directed actions. This volume thus covers a large spectrum of research even though it is impossible to include all topics in the extremely diverse field of neurosciences
    corecore