209 research outputs found

    A high-performance speech neuroprosthesis

    Get PDF
    Speech brain-computer interfaces (BCIs) have the potential to restore rapid communication to people with paralysis by decoding neural activity evoked by attempted speech into tex

    Non-linear adaptive control inspired by neuromuscular systems

    Get PDF
    Current paradigms for neuromorphic computing focus on internal computing mechanisms, for instance using spiking-neuron models. In this study, we propose to exploit what is known about neuro-mechanical control, exploiting the mechanisms of neural ensembles and recruitment, combined with the use of second-order overdamped impulse responses corresponding to the mechanical twitches of muscle-fiber groups. Such systems may be used for controlling any analog process, by realizing three aspects: Timing, output quantity representation and wave-shape approximation. We present an electronic based model implementing a single motor unit for twitch generation. Such units can be used to construct random ensembles, separately for an agonist and antagonist 'muscle'. Adaptivity is realized by assuming a multi-state memristive system for determining time constants in the circuit. Using (Spice)-based simulations, several control tasks were implemented which involved timing, amplitude and wave shape: The inverted pendulum task, the 'whack-a-mole' task and a handwriting simulation. The proposed model can be used for both electric-to-electronic as well as electric-to-mechanical tasks. In particular, the ensemble-based approach and local adaptivity may be of use in future multi-fiber polymer or multi-actuator pneumatic artificial muscles, allowing for robust control under varying conditions and fatigue, as is the case in biological muscles

    A neural model of the motor control system

    Get PDF
    In this thesis I present the Recurrent Error-driven Adaptive Control Hierarchy (REACH); a large-scale spiking neuron model of the motor cortices and cerebellum of the motor control system. The REACH model consists of anatomically organized spiking neurons that control a nonlinear three-link arm to perform reaching and handwriting, while being able to adapt to unknown changes in arm dynamics and structure. I show that the REACH model accounts for data across 19 clinical and experimental studies of the motor control system. These data includes a mix of behavioural and neural spiking activity, across normal and damaged subjects performing adaptive and static tasks. The REACH model is a dynamical control system based on modern control theoretic methods, specifically operational space control, dynamic movement primitives, and nonlinear adaptive control. The model is implemented in spiking neurons using the Neural Engineering Framework (NEF). The model plans trajectories in end-effector space, and transforms these commands into joint torques that can be sent to the arm simulation. Adaptive components of the model are able to compensate for unknown kinematic or dynamic system parameters, such as arm segment length or mass. Using the NEF the adaptive components of the system can be seeded with approximations of the system kinematics and dynamics, allowing faster convergence to stability. Stability proofs for nonlinear adaptation methods implemented in distributed systems with scalar output are presented. By implementing the motor control model in spiking neurons, biological constraints such as neurotransmitter time-constants and anatomical connectivity can be imposed, allowing further comparison to experimental data for model validation. The REACH model is compared to clinical data from human patients as well as neural recording from monkeys performing reaching experiments. The REACH model represents a novel integration of control theoretic methods and neuroscientific constraints to specify a general, adaptive, biologically plausible motor control algorithm.4 month

    A Compositionality Machine Realized by a Hierarchic Architecture of Synfire Chains

    Get PDF
    The composition of complex behavior is thought to rely on the concurrent and sequential activation of simpler action components, or primitives. Systems of synfire chains have previously been proposed to account for either the simultaneous or the sequential aspects of compositionality; however, the compatibility of the two aspects has so far not been addressed. Moreover, the simultaneous activation of primitives has up until now only been investigated in the context of reactive computations, i.e., the perception of stimuli. In this study we demonstrate how a hierarchical organization of synfire chains is capable of generating both aspects of compositionality for proactive computations such as the generation of complex and ongoing action. To this end, we develop a network model consisting of two layers of synfire chains. Using simple drawing strokes as a visualization of abstract primitives, we map the feed-forward activity of the upper level synfire chains to motion in two-dimensional space. Our model is capable of producing drawing strokes that are combinations of primitive strokes by binding together the corresponding chains. Moreover, when the lower layer of the network is constructed in a closed-loop fashion, drawing strokes are generated sequentially. The generated pattern can be random or deterministic, depending on the connection pattern between the lower level chains. We propose quantitative measures for simultaneity and sequentiality, revealing a wide parameter range in which both aspects are fulfilled. Finally, we investigate the spiking activity of our model to propose candidate signatures of synfire chain computation in measurements of neural activity during action execution

    Emergent Bio-Functional Similarities in a Cortical-Spike-Train-Decoding Spiking Neural Network Facilitate Predictions of Neural Computation

    Full text link
    Despite its better bio-plausibility, goal-driven spiking neural network (SNN) has not achieved applicable performance for classifying biological spike trains, and showed little bio-functional similarities compared to traditional artificial neural networks. In this study, we proposed the motorSRNN, a recurrent SNN topologically inspired by the neural motor circuit of primates. By employing the motorSRNN in decoding spike trains from the primary motor cortex of monkeys, we achieved a good balance between classification accuracy and energy consumption. The motorSRNN communicated with the input by capturing and cultivating more cosine-tuning, an essential property of neurons in the motor cortex, and maintained its stability during training. Such training-induced cultivation and persistency of cosine-tuning was also observed in our monkeys. Moreover, the motorSRNN produced additional bio-functional similarities at the single-neuron, population, and circuit levels, demonstrating biological authenticity. Thereby, ablation studies on motorSRNN have suggested long-term stable feedback synapses contribute to the training-induced cultivation in the motor cortex. Besides these novel findings and predictions, we offer a new framework for building authentic models of neural computation
    corecore