163,191 research outputs found

    One-Class Classification: Taxonomy of Study and Review of Techniques

    Full text link
    One-class classification (OCC) algorithms aim to build classification models when the negative class is either absent, poorly sampled or not well defined. This unique situation constrains the learning of efficient classifiers by defining class boundary just with the knowledge of positive class. The OCC problem has been considered and applied under many research themes, such as outlier/novelty detection and concept learning. In this paper we present a unified view of the general problem of OCC by presenting a taxonomy of study for OCC problems, which is based on the availability of training data, algorithms used and the application domains applied. We further delve into each of the categories of the proposed taxonomy and present a comprehensive literature review of the OCC algorithms, techniques and methodologies with a focus on their significance, limitations and applications. We conclude our paper by discussing some open research problems in the field of OCC and present our vision for future research.Comment: 24 pages + 11 pages of references, 8 figure

    Profile approach for recognition of three-dimensional magnetic structures

    Full text link
    We propose an approach for low-dimensional visualisation and classification of complex topological magnetic structures formed in magnetic materials. Within the approach one converts a three-dimensional magnetic configuration to a vector containing the only components of the spins that are parallel to the z axis. The next crucial step is to sort the vector elements in ascending or descending order. Having visualized profiles of the sorted spin vectors one can distinguish configurations belonging to different phases even with the same total magnetization. For instance, spin spiral and paramagnetic states with zero total magnetic moment can be easily identified. Being combined with a simplest neural network our profile approach provides a very accurate phase classification for three-dimensional magnets characterized by complex multispiral states even in the critical areas close to phases transitions. By the example of the skyrmionic configurations we show that profile approach can be used to separate the states belonging to the same phase

    Multimodal Subspace Support Vector Data Description

    Get PDF
    In this paper, we propose a novel method for projecting data from multiple modalities to a new subspace optimized for one-class classification. The proposed method iteratively transforms the data from the original feature space of each modality to a new common feature space along with finding a joint compact description of data coming from all the modalities. For data in each modality, we define a separate transformation to map the data from the corresponding feature space to the new optimized subspace by exploiting the available information from the class of interest only. We also propose different regularization strategies for the proposed method and provide both linear and non-linear formulations. The proposed Multimodal Subspace Support Vector Data Description outperforms all the competing methods using data from a single modality or fusing data from all modalities in four out of five datasets.Comment: 26 pages manuscript (6 tables, 2 figures), 24 pages supplementary material (27 tables, 10 figures). The manuscript and supplementary material are combined as a single .pdf (50 pages) fil
    corecore