875 research outputs found

    Bayesian adaptive learning of the parameters of hidden Markov model for speech recognition

    Get PDF
    A theoretical framework for Bayesian adaptive training of the parameters of a discrete hidden Markov model (DHMM) and of a semi-continuous HMM (SCHMM) with Gaussian mixture state observation densities is presented. In addition to formulating the forward-backward MAP (maximum a posteriori) and the segmental MAP algorithms for estimating the above HMM parameters, a computationally efficient segmental quasi-Bayes algorithm for estimating the state-specific mixture coefficients in SCHMM is developed. For estimating the parameters of the prior densities, a new empirical Bayes method based on the moment estimates is also proposed. The MAP algorithms and the prior parameter specification are directly applicable to training speaker adaptive HMMs. Practical issues related to the use of the proposed techniques for HMM-based speaker adaptation are studied. The proposed MAP algorithms are shown to be effective especially in the cases in which the training or adaptation data are limited.published_or_final_versio

    Hidden Markov Models

    Get PDF
    Hidden Markov Models (HMMs), although known for decades, have made a big career nowadays and are still in state of development. This book presents theoretical issues and a variety of HMMs applications in speech recognition and synthesis, medicine, neurosciences, computational biology, bioinformatics, seismology, environment protection and engineering. I hope that the reader will find this book useful and helpful for their own research

    Continuous Hidden Markov Models for Depth Map-Based Human Activity Recognition

    Get PDF

    Multichannel dynamic modeling of non-Gaussian mixtures

    Full text link
    [EN] This paper presents a novel method that combines coupled hidden Markov models (HMM) and non Gaussian mixture models based on independent component analyzer mixture models (ICAMM). The proposed method models the joint behavior of a number of synchronized sequential independent component analyzer mixture models (SICAMM), thus we have named it generalized SICAMM (G-SICAMM). The generalization allows for flexible estimation of complex data densities, subspace classification, blind source separation, and accurate modeling of both local and global dynamic interactions. In this work, the structured result obtained by G-SICAMM was used in two ways: classification and interpretation. Classification performance was tested on an extensive number of simulations and a set of real electroencephalograms (EEG) from epileptic patients performing neuropsychological tests. G-SICAMM outperformed the following competitive methods: Gaussian mixture models, HMM, Coupled HMM, ICAMM, SICAMM, and a long short-term memory (LSTM) recurrent neural network. As for interpretation, the structured result returned by G-SICAMM on EEGs was mapped back onto the scalp, providing a set of brain activations. These activations were consistent with the physiological areas activated during the tests, thus proving the ability of the method to deal with different kind of data densities and changing non-stationary and non-linear brain dynamics. (C) 2019 Elsevier Ltd. All rights reserved.This work was supported by Spanish Administration (Ministerio de Economia y Competitividad) and European Union (FEDER) under grants TEC2014-58438-R and TEC2017-84743-P.Safont Armero, G.; Salazar Afanador, A.; Vergara DomĂ­nguez, L.; Gomez, E.; Villanueva, V. (2019). Multichannel dynamic modeling of non-Gaussian mixtures. Pattern Recognition. 93:312-323. https://doi.org/10.1016/j.patcog.2019.04.022S3123239

    In All Likelihood, Deep Belief Is Not Enough

    Full text link
    Statistical models of natural stimuli provide an important tool for researchers in the fields of machine learning and computational neuroscience. A canonical way to quantitatively assess and compare the performance of statistical models is given by the likelihood. One class of statistical models which has recently gained increasing popularity and has been applied to a variety of complex data are deep belief networks. Analyses of these models, however, have been typically limited to qualitative analyses based on samples due to the computationally intractable nature of the model likelihood. Motivated by these circumstances, the present article provides a consistent estimator for the likelihood that is both computationally tractable and simple to apply in practice. Using this estimator, a deep belief network which has been suggested for the modeling of natural image patches is quantitatively investigated and compared to other models of natural image patches. Contrary to earlier claims based on qualitative results, the results presented in this article provide evidence that the model under investigation is not a particularly good model for natural image

    Text-independent speaker recognition

    Get PDF
    This research presents new text-independent speaker recognition system with multivariate tools such as Principal Component Analysis (PCA) and Independent Component Analysis (ICA) embedded into the recognition system after the feature extraction step. The proposed approach evaluates the performance of such a recognition system when trained and used in clean and noisy environments. Additive white Gaussian noise and convolutive noise are added. Experiments were carried out to investigate the robust ability of PCA and ICA using the designed approach. The application of ICA improved the performance of the speaker recognition model when compared to PCA. Experimental results show that use of ICA enabled extraction of higher order statistics thereby capturing speaker dependent statistical cues in a text-independent recognition system. The results show that ICA has a better de-correlation and dimension reduction property than PCA. To simulate a multi environment system, we trained our model such that every time a new speech signal was read, it was contaminated with different types of noises and stored in the database. Results also show that ICA outperforms PCA under adverse environments. This is verified by computing recognition accuracy rates obtained when the designed system was tested for different train and test SNR conditions with additive white Gaussian noise and test delay conditions with echo effect
    • …
    corecore