195 research outputs found

    Statistical and Machine Learning Models for Remote Sensing Data Mining - Recent Advancements

    Get PDF
    This book is a reprint of the Special Issue entitled "Statistical and Machine Learning Models for Remote Sensing Data Mining - Recent Advancements" that was published in Remote Sensing, MDPI. It provides insights into both core technical challenges and some selected critical applications of satellite remote sensing image analytics

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Ocean remote sensing techniques and applications: a review (Part II)

    Get PDF
    As discussed in the first part of this review paper, Remote Sensing (RS) systems are great tools to study various oceanographic parameters. Part I of this study described different passive and active RS systems and six applications of RS in ocean studies, including Ocean Surface Wind (OSW), Ocean Surface Current (OSC), Ocean Wave Height (OWH), Sea Level (SL), Ocean Tide (OT), and Ship Detection (SD). In Part II, the remaining nine important applications of RS systems for ocean environments, including Iceberg, Sea Ice (SI), Sea Surface temperature (SST), Ocean Surface Salinity (OSS), Ocean Color (OC), Ocean Chlorophyll (OCh), Ocean Oil Spill (OOS), Underwater Ocean, and Fishery are comprehensively reviewed and discussed. For each application, the applicable RS systems, their advantages and disadvantages, various RS and Machine Learning (ML) techniques, and several case studies are discussed.Peer ReviewedPostprint (published version

    ВСрификация Ρ€Π°Π·Π»ΠΈΠ²ΠΎΠ² Π½Π΅Ρ„Ρ‚ΠΈ Π½Π° Π²ΠΎΠ΄Π½Ρ‹Ρ… повСрхностях ΠΏΠΎ аэрофотоснимкам Π½Π° основС ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Π³Π»ΡƒΠ±ΠΎΠΊΠΎΠ³ΠΎ обучСния

    Get PDF
    Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ Ρ€Π΅ΡˆΠ°Π΅Ρ‚ΡΡ Π·Π°Π΄Π°Ρ‡Π° Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ Ρ€Π°Π·Π»ΠΈΠ²ΠΎΠ² Π½Π΅Ρ„Ρ‚ΠΈ Π½Π° Π²ΠΎΠ΄Π½Ρ‹Ρ… повСрхностях Ρ€Π΅ΠΊ, ΠΌΠΎΡ€Π΅ΠΉ ΠΈ ΠΎΠΊΠ΅Π°Π½ΠΎΠ² ΠΏΠΎ оптичСским аэрофотоснимкам с использованиСм ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Π³Π»ΡƒΠ±ΠΎΠΊΠΎΠ³ΠΎ обучСния. ΠžΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΡŒΡŽ Π΄Π°Π½Π½ΠΎΠΉ Π·Π°Π΄Π°Ρ‡ΠΈ являСтся Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ Π²ΠΈΠ·ΡƒΠ°Π»ΡŒΠ½ΠΎ ΠΏΠΎΡ…ΠΎΠΆΠΈΡ… Π½Π° Ρ€Π°Π·Π»ΠΈΠ²Ρ‹ Π½Π΅Ρ„Ρ‚ΠΈ областСй Π½Π° Π²ΠΎΠ΄Π½Ρ‹Ρ… повСрхностях, Π²Ρ‹Π·Π²Π°Π½Π½Ρ‹Ρ… Ρ†Π²Π΅Ρ‚Π΅Π½ΠΈΠ΅ΠΌ водорослСй, вСщСств, Π½Π΅ приносящих экологичСский ΡƒΡ‰Π΅Ρ€Π± (Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, пальмовоС масло), Π±Π»ΠΈΠΊΠΎΠ² ΠΏΡ€ΠΈ съСмкС ΠΈΠ»ΠΈ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ‹Ρ… явлСний (Ρ‚Π°ΠΊ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡ‹Π΅ Β«Π΄Π²ΠΎΠΉΠ½ΠΈΠΊΠΈΒ»). МногиС исслСдования Π² Π΄Π°Π½Π½ΠΎΠΉ области основаны Π½Π° Π°Π½Π°Π»ΠΈΠ·Π΅ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΎΡ‚ Ρ€Π°Π΄Π°Ρ€ΠΎΠ² с синтСзированной Π°ΠΏΠ΅Ρ€Ρ‚ΡƒΡ€ΠΎΠΉ (Synthetic Aperture Radar (SAR) images), ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π΅ ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‚ Ρ‚ΠΎΡ‡Π½ΠΎΠΉ классификации ΠΈ сСгмСнтации. ΠŸΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π°Ρ вСрификация способствуСт ΡΠΎΠΊΡ€Π°Ρ‰Π΅Π½ΠΈΡŽ экологичСского ΠΈ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΡƒΡ‰Π΅Ρ€Π±Π°, Π° ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΠ½Π³ Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠ² ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ нСфтяного пятна ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ для принятия Π΄Π°Π»ΡŒΠ½Π΅ΠΉΡˆΠΈΡ… Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ ΠΏΠΎ ΡƒΡΡ‚Ρ€Π°Π½Π΅Π½ΠΈΡŽ послСдствий. ΠŸΡ€Π΅Π΄Π»Π°Π³Π°Π΅Ρ‚ΡΡ Π½ΠΎΠ²Ρ‹ΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ ΠΊ Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ оптичСских снимков ΠΊΠ°ΠΊ Π·Π°Π΄Π°Ρ‡ΠΈ Π±ΠΈΠ½Π°Ρ€Π½ΠΎΠΉ классификации Π½Π° основС сиамской сСти, ΠΊΠΎΠ³Π΄Π° Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ исходного изобраТСния ΠΌΠ½ΠΎΠ³ΠΎΠΊΡ€Π°Ρ‚Π½ΠΎ сравниваСтся с Ρ€Π΅ΠΏΡ€Π΅Π·Π΅Π½Ρ‚Π°Ρ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π°ΠΌΠΈ ΠΈΠ· класса нСфтяных пятСн Π½Π° Π²ΠΎΠ΄Π½Ρ‹Ρ… повСрхностях. Основой сиамской сСти слуТит облСгчСнная ΡΠ΅Ρ‚ΡŒ VGG16. ΠŸΡ€ΠΈ ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ΅Π½ΠΈΠΈ ΠΏΠΎΡ€ΠΎΠ³ΠΎΠ²ΠΎΠ³ΠΎ значСния Π²Ρ‹Ρ…ΠΎΠ΄Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ принимаСтся Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΠΎ Π½Π°Π»ΠΈΡ‡ΠΈΠΈ Ρ€Π°Π·Π»ΠΈΠ²Π° Π½Π΅Ρ„Ρ‚ΠΈ. Для обучСния сСти Π±Ρ‹Π» собран ΠΈ Ρ€Π°Π·ΠΌΠ΅Ρ‡Π΅Π½ собствСнный Π½Π°Π±ΠΎΡ€ Π΄Π°Π½Π½Ρ‹Ρ… ΠΈΠ· ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚Ρ‹Ρ… ΠΈΠ½Ρ‚Π΅Ρ€Π½Π΅Ρ‚-рСсурсов. БущСствСнной ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠΎΠΉ являСтся Π½Π΅ΡΠ±Π°Π»Π°Π½ΡΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΡΡ‚ΡŒ Π²Ρ‹Π±ΠΎΡ€ΠΊΠΈ Π΄Π°Π½Π½Ρ‹Ρ… ΠΏΠΎ классам, Ρ‡Ρ‚ΠΎ ΠΏΠΎΡ‚Ρ€Π΅Π±ΠΎΠ²Π°Π»ΠΎ примСнСния ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Π°ΡƒΠ³ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ, основанных Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π½Π° гСомСтричСских ΠΈ Ρ†Π²Π΅Ρ‚ΠΎΠ²Ρ‹Ρ… манипуляциях, Π½ΠΎ ΠΈ Π½Π° основС Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ ΡΠΎΡΡ‚ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ сСти (Generative Adversarial Network, GAN). ЭкспСримСнты ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ классификации Ρ€Π°Π·Π»ΠΈΠ²ΠΎΠ² Π½Π΅Ρ„Ρ‚ΠΈ ΠΈ Β«Π΄Π²ΠΎΠΉΠ½ΠΈΠΊΠΎΠ²Β» Π½Π° тСстовой Π²Ρ‹Π±ΠΎΡ€ΠΊΠ΅ достигаСт Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ 0,91 ΠΈ 0,834 соотвСтствСнно. Π”Π°Π»Π΅Π΅ Ρ€Π΅ΡˆΠ°Π΅Ρ‚ΡΡ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ Π·Π°Π΄Π°Ρ‡Π° сСмантичСской сСгмСнтации нСфтяного пятна с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ свСрточных Π½Π΅ΠΉΡ€ΠΎΠ½Π½Ρ‹Ρ… сСтСй (БНБ) Ρ‚ΠΈΠΏΠ° ΠΊΠΎΠ΄ΠΈΡ€ΠΎΠ²Ρ‰ΠΈΠΊ-Π΄Π΅ΠΊΠΎΠ΄ΠΈΡ€ΠΎΠ²Ρ‰ΠΈΠΊ. Для сСгмСнтации исслСдовались Ρ‚Ρ€ΠΈ Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€Ρ‹ Π³Π»ΡƒΠ±ΠΎΠΊΠΈΡ… сСтСй, Π° ΠΈΠΌΠ΅Π½Π½ΠΎ U-Net, SegNet ΠΈ Poly-YOLOv3. Π›ΡƒΡ‡ΡˆΠΈΠ΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎΠΊΠ°Π·Π°Π»Π° ΡΠ΅Ρ‚ΡŒ Poly-YOLOv3, достигнув точности 0,97 ΠΏΡ€ΠΈ срСднСм Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ снимка 385 с Π²Π΅Π±-сСрвисом Google Colab. Π’Π°ΠΊΠΆΠ΅ Π±Ρ‹Π»Π° спроСктирована Π±Π°Π·Π° Π΄Π°Π½Π½Ρ‹Ρ… для хранСния исходных ΠΈ Π²Π΅Ρ€ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ с ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ½Ρ‹ΠΌΠΈ областями

    Two-Stage Convolutional Neural Network for Ship and Spill Detection Using SLAR Images

    Get PDF
    This paper presents a system for the detection of ships and oil spills using side-looking airborne radar (SLAR) images. The proposed method employs a two-stage architecture composed of three pairs of convolutional neural networks (CNNs). Each pair of networks is trained to recognize a single class (ship, oil spill, and coast) by following two steps: a first network performs a coarse detection, and then, a second specialized CNN obtains the precise localization of the pixels belonging to each class. After classification, a postprocessing stage is performed by applying a morphological opening filter in order to eliminate small look-alikes, and removing those oil spills and ships that are surrounded by a minimum amount of coast. Data augmentation is performed to increase the number of samples, owing to the difficulty involved in obtaining a sufficient number of correctly labeled SLAR images. The proposed method is evaluated and compared to a single multiclass CNN architecture and to previous state-of-the-art methods using accuracy, precision, recall, F-measure, and intersection over union. The results show that the proposed method is efficient and competitive, and outperforms the approaches previously used for this task.This work was supported in part by the Spanish Government’s Ministry of Economy, Industry, and Competitiveness under Project RTC-2014-1863-8 and in part by Babcock MCS Spain under Project INAER4-14Y (IDI-20141234)
    • …
    corecore