61,051 research outputs found

    Embedding Requirements within the Model Driven Architecture

    Get PDF
    The Model Driven Architecture (MDA) brings benefits to software development, among them the potential for connecting software models with the business domain. This paper focuses on the upstream or Computation Independent Model (CIM) phase of the MDA. Our contention is that, whilst there are many models and notations available within the CIM Phase, those that are currently popular and supported by the Object Management Group (OMG), may not be the most useful notations for business analysts nor sufficient to fully support software requirements and specification. Therefore, with specific emphasis on the value of the Business Process Modelling Notation (BPMN) for business analysts, this paper provides an example of a typical CIM approach before describing an approach which incorporates specific requirements techniques. A framework extension to the MDA is then introduced; which embeds requirements and specification within the CIM, thus further enhancing the utility of MDA by providing a more complete method for business analysis

    Adaptive Process Management in Cyber-Physical Domains

    Get PDF
    The increasing application of process-oriented approaches in new challenging cyber-physical domains beyond business computing (e.g., personalized healthcare, emergency management, factories of the future, home automation, etc.) has led to reconsider the level of flexibility and support required to manage complex processes in such domains. A cyber-physical domain is characterized by the presence of a cyber-physical system coordinating heterogeneous ICT components (PCs, smartphones, sensors, actuators) and involving real world entities (humans, machines, agents, robots, etc.) that perform complex tasks in the ā€œphysicalā€ real world to achieve a common goal. The physical world, however, is not entirely predictable, and processes enacted in cyber-physical domains must be robust to unexpected conditions and adaptable to unanticipated exceptions. This demands a more flexible approach in process design and enactment, recognizing that in real-world environments it is not adequate to assume that all possible recovery activities can be predefined for dealing with the exceptions that can ensue. In this chapter, we tackle the above issue and we propose a general approach, a concrete framework and a process management system implementation, called SmartPM, for automatically adapting processes enacted in cyber-physical domains in case of unanticipated exceptions and exogenous events. The adaptation mechanism provided by SmartPM is based on declarative task specifications, execution monitoring for detecting failures and context changes at run-time, and automated planning techniques to self-repair the running process, without requiring to predefine any specific adaptation policy or exception handler at design-time

    Service-oriented modeling for e-business applications components

    Get PDF
    The emerging trends for e-business engineering revolve around specialisation and cooperation. Successful companies focus on their core competences, and rely on a network of business partners for the support services required to compose a comprehensive offer for their customers. Modulariy is crucial for a flexible e-business infrastructure, but related requirements seldom reflect on the design and operational models of business information systems. Software components are widely used for the implementation of e-business applications, with proved benefits in terms of system development and maintenance. We propose a service-oriented componentisation of ebusiness systems as a way to close the gap with the business models they support. Blurring the distinction between external services and internal capabilities, we propose a homogeneous model for the definition of ebusiness applications components. After a brief discussion on the foundational aspects of the approach, we present the process-based technique we adopted for component modelling. We then present an infrastructure compliant with the model proposed that we built on top of an EJB (Enterprise Java Beans) platform

    Efficient and Effective Handling of Exceptions in Java Points-To Analysis

    Get PDF
    A joint points-to and exception analysis has been shown to yield benefits in both precision and performance. Treating exceptions as regular objects, however, incurs significant and rather unexpected overhead. We show that in a typical joint analysis most of the objects computed to flow in and out of a method are due to exceptional control-flow and not normal call-return control-flow. For instance, a context-insensitive analysis of the Antlr benchmark from the DaCapo suite computes 4-5 times more objects going in or out of a method due to exceptional control-flow than due to normal control-flow. As a consequence, the analysis spends a large amount of its time considering exceptions. We show that the problem can be addressed both e ectively and elegantly by coarsening the representation of exception objects. An interesting find is that, instead of recording each distinct exception object, we can collapse all exceptions of the same type, and use one representative object per type, to yield nearly identical precision (loss of less than 0.1%) but with a boost in performance of at least 50% for most analyses and benchmarks and large space savings (usually 40% or more)

    Construction and Verification of Performance and Reliability Models

    Get PDF
    Over the last two decades formal methods have been extended towards performance and reliability evaluation. This paper tries to provide a rather intuitive explanation of the basic concepts and features in this area. Instead of striving for mathematical rigour, the intention is to give an illustrative introduction to the basics of stochastic models, to stochastic modelling using process algebra, and to model checking as a technique to analyse stochastic models

    Using Program Synthesis for Program Analysis

    Get PDF
    In this paper, we identify a fragment of second-order logic with restricted quantification that is expressive enough to capture numerous static analysis problems (e.g. safety proving, bug finding, termination and non-termination proving, superoptimisation). We call this fragment the {\it synthesis fragment}. Satisfiability of a formula in the synthesis fragment is decidable over finite domains; specifically the decision problem is NEXPTIME-complete. If a formula in this fragment is satisfiable, a solution consists of a satisfying assignment from the second order variables to \emph{functions over finite domains}. To concretely find these solutions, we synthesise \emph{programs} that compute the functions. Our program synthesis algorithm is complete for finite state programs, i.e. every \emph{function} over finite domains is computed by some \emph{program} that we can synthesise. We can therefore use our synthesiser as a decision procedure for the synthesis fragment of second-order logic, which in turn allows us to use it as a powerful backend for many program analysis tasks. To show the tractability of our approach, we evaluate the program synthesiser on several static analysis problems.Comment: 19 pages, to appear in LPAR 2015. arXiv admin note: text overlap with arXiv:1409.492
    • ā€¦
    corecore