705 research outputs found

    Modern computing: Vision and challenges

    Get PDF
    Over the past six decades, the computing systems field has experienced significant transformations, profoundly impacting society with transformational developments, such as the Internet and the commodification of computing. Underpinned by technological advancements, computer systems, far from being static, have been continuously evolving and adapting to cover multifaceted societal niches. This has led to new paradigms such as cloud, fog, edge computing, and the Internet of Things (IoT), which offer fresh economic and creative opportunities. Nevertheless, this rapid change poses complex research challenges, especially in maximizing potential and enhancing functionality. As such, to maintain an economical level of performance that meets ever-tighter requirements, one must understand the drivers of new model emergence and expansion, and how contemporary challenges differ from past ones. To that end, this article investigates and assesses the factors influencing the evolution of computing systems, covering established systems and architectures as well as newer developments, such as serverless computing, quantum computing, and on-device AI on edge devices. Trends emerge when one traces technological trajectory, which includes the rapid obsolescence of frameworks due to business and technical constraints, a move towards specialized systems and models, and varying approaches to centralized and decentralized control. This comprehensive review of modern computing systems looks ahead to the future of research in the field, highlighting key challenges and emerging trends, and underscoring their importance in cost-effectively driving technological progress

    Data Collection and Information Freshness in Energy Harvesting Networks

    Get PDF
    An Internet of Things (IoT) network consists of multiple devices with sensor(s), and one or more access points or gateways. These devices monitor and sample targets, such as valuable assets, before transmitting their samples to an access point or the cloud for storage or/and analysis. A critical issue is that devices have limited energy, which constrains their operational lifetime. To this end, researchers have proposed various solutions to extend the lifetime of devices. A popular solution involves optimizing the duty cycle of devices; equivalently, the ratio of their active and inactive/sleep time. Another solution is to employ energy harvesting technologies. Specifically, devices rely on one or more energy sources such as wind, solar or Radio Frequency (RF) signals to power their operations. Apart from energy, another fundamental problem is the limited spectrum shared by devices. This means they must take turns to transmit to a gateway. Equivalently, they need a transmission schedule that determines when they transmit their samples to a gateway. To this end, this thesis addresses three novel device/sensor selection problems. It first aims to determine the best devices to transmit in each time slot in an RF Energy-Harvesting Wireless Sensor Network (EH-WSN) in order to maximize throughput or sum-rate. Briefly, a Hybrid Access Point (HAP) is responsible for charging devices via downlink RF energy transfer. After that, the HAP selects a subset of devices to transmit their data. A key challenge is that the HAP has neither channel state information nor energy level information of device. In this respect, this thesis outlines two centralized algorithms that are based on cross-entropy optimization and Gibbs sampling. Next, this thesis considers information freshness when selecting devices, where the HAP aims to minimize the average Age of Information (AoI) of samples from devices. Specifically, the HAP must select devices to sample and transmit frequently. Further, it must select devices without channel state information. To this end, this thesis outlines a decentralized Q-learning algorithm that allows the HAP to select devices according to their AoI. Lastly, this thesis considers targets with time-varying states. As before, the aim is to determine the best set of devices to be active in each frame in order to monitor targets. However, the aim is to optimize a novel metric called the age of incorrect information. Further, devices cooperate with one another to monitor target(s). To choose the best set of devices and minimize the said metric, this thesis proposes two decentralized algorithms, i.e., a decentralized Q-learning algorithm and a novel state space free learning algorithm. Different from the decentralized Q-learning algorithm, the state space free learning algorithm does not require devices to store Q-tables, which record the expected reward of actions taken by devices

    Toward Dynamic Social-Aware Networking Beyond Fifth Generation

    Get PDF
    The rise of the intelligent information world presents significant challenges for the telecommunication industry in meeting the service-level requirements of future applications and incorporating societal and behavioral awareness into the Internet of Things (IoT) objects. Social Digital Twins (SDTs), or Digital Twins augmented with social capabilities, have the potential to revolutionize digital transformation and meet the connectivity, computing, and storage needs of IoT devices in dynamic Fifth-Generation (5G) and Beyond Fifth-Generation (B5G) networks. This research focuses on enabling dynamic social-aware B5G networking. The main contributions of this work include(i) the design of a reference architecture for the orchestration of SDTs at the network edge to accelerate the service discovery procedure across the Social Internet of Things (SIoT); (ii) a methodology to evaluate the highly dynamic system performance considering jointly communication and computing resources; (iii) a set of practical conclusions and outcomes helpful in designing future digital twin-enabled B5G networks. Specifically, we propose an orchestration for SDTs and an SIoT-Edge framework aligned with the Multi-access Edge Computing (MEC) architecture ratified by the European Telecommunications Standards Institute (ETSI). We formulate the optimal placement of SDTs as a Quadratic Assignment Problem (QAP) and propose a graph-based approximation scheme considering the different types of IoT devices, their social features, mobility patterns, and the limited computing resources of edge servers. We also study the appropriate intervals for re-optimizing the SDT deployment at the network edge. The results demonstrate that accounting for social features in SDT placement offers considerable improvements in the SIoT browsing procedure. Moreover, recent advancements in wireless communications, edge computing, and intelligent device technologies are expected to promote the growth of SIoT with pervasive sensing and computing capabilities, ensuring seamless connections among SIoT objects. We then offer a performance evaluation methodology for eXtended Reality (XR) services in edge-assisted wireless networks and propose fluid approximations to characterize the XR content evolution. The approach captures the time and space dynamics of the content distribution process during its transient phase, including time-varying loads, which are affected by arrival, transition, and departure processes. We examine the effects of XR user mobility on both communication and computing patterns. The results demonstrate that communication and computing planes are the key barriers to meeting the requirement for real-time transmissions. Furthermore, due to the trend toward immersive, interactive, and contextualized experiences, new use cases affect user mobility patterns and, therefore, system performance.Cotutelle -yhteisväitöskirj

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    3D Design Review Systems in Immersive Environments

    Get PDF
    Design reviews play a crucial role in the development process, ensuring the quality and effectiveness of designs in various industries. However, traditional design review methods face challenges in effectively understanding and communicating complex 3D models. Immersive technologies, particularly Head-Mounted Displays (HMDs), offer new opportunities to enhance the design review process. In this thesis, we investigate using immersive environments, specifically HMDs, for 3D design reviews. We begin with a systematic literature review to understand the current state of employing HMDs in industry for design reviews. As part of this review, we utilize a detailed taxonomy from the literature to categorize and analyze existing approaches. Additionally, we present four iterations of an immersive design review system developed during my industry experience. Two of these iterations are evaluated through case studies involving domain experts, including engineers, designers, and clients. A formal semi-structured focus group is conducted to gain further insights into traditional design review practices. The outcomes of these evaluations and the focus group discussions are thoroughly discussed. Based on the literature review and the focus group findings, we uncover a new challenge associated with using HMDs in immersive design reviews—asynchronous and remote collaboration. Unlike traditional design reviews, where participants view the same section on a shared screen, HMDs allow independent exploration of areas of interest, leading to a shift from synchronous to asynchronous communication. Consequently, important feedback may be missed as the lead designer disconnects from the users' perspectives. To address this challenge, we collaborate with a domain expert to develop a prototype that utilizes heatmap visualization to display 3D gaze data distribution. This prototype enables lead designers to quickly identify areas of review and missed regions. The study incorporates the Design Critique approach and provides valuable insights into different heatmap visualization variants (top view projection, object-based, and volume-based). Furthermore, a list of well-defined requirements is outlined for future spatio-temporal visualization applications aimed at integrating into existing workflows. Overall, this thesis contributes to the understanding and improvement of immersive design review systems, particularly in the context of utilizing HMDs. It offers insights into the current state of employing HMDs for design reviews, utilizes a taxonomy from the literature to analyze existing approaches, highlights challenges associated with asynchronous collaboration, and proposes a prototype solution with heatmap visualization to address the identified challenge

    Undergraduate and Graduate Course Descriptions, 2023 Spring

    Get PDF
    Wright State University undergraduate and graduate course descriptions from Spring 2023

    Catchment based analysis of macronutrients (nitrogen and phosphorus) and organic carbon dynamics: new modelling and participatory tools

    Get PDF
    Ecosystem services (ESs) are increasingly being considered in decision-making with respect to mitigating future climate impacts. To capture complex variation in spatial and temporal dynamics, ecosystem models require spatially explicit data that are often difficult to obtain for model development and validation. Citizen science allows for the participation of trained citizen volunteers in research or regulatory activities, resulting in increased data collection and increased participation of the general public in resource management. Despite the increasing experience in citizen science, these approaches have seldom been used in the modelling of provisioning ecosystem services. The development of new approaches for the analysis of long-term changes in riverine carbon, hydrological and nutrient cycles is important to identify potential alteration on the biogeochemical cycles and potential impacts on the ecosystem services provided to the local population. The Basin scale approach is useful to evaluate the pressures on river ecosystems that may be distant from the receiving watercourse, including the effects of soil or water management activities that propagate or amplify downstream. However, the lack of process-based and basin-scale models for carbon transport has limited effective basin management of organic carbon fluxes from soils, through river networks and to receiving marine waters. In the present study, were examined the temporal and spatial drivers in macronutrient (nitrogen and phosphorus) and sediment delivery, carbon storage and sequestration and water yield in a major Italian river catchment and under different NBS scenarios. Information on climate, land use, soil and river conditions, as well as future climate scenarios, were used to explore future (2050) benefits of NBS on local and basin scales, followed the national and European directives related to water quality (Directive 2000/60/EC) and habitat (Directive 92/43/EEC). It was developed and validate a spatially semi-distributed mass balance modelling approach to estimate organic carbon delivery at a sub-basin scale and which allows exploration of alternative river basin management scenarios and their impact on DOC and POC dynamics. The model is built as an open-source plugin for QGIS and can be easily integrated with other basin scale decision support models on nutrient and sediment export. Furthermore, was performed an estimation of the benefits of individual and combined NBS approaches related to river restoration and catchment reforestation. To complete the ESs overall evaluation and prioritization was developed a new method in order to attributing a weight to the best NBS scenarios based on the natural stoichiometric ratio between the elements carbon, silicon, nitrogen, phosphorus (C:Si:N:P

    Offene-Welt-Strukturen: Architektur, Stadt- und Naturlandschaft im Computerspiel

    Get PDF
    Welche Rolle spielen Algorithmen für den Bildbau und die Darstellung von Welt und Wetter in Computerspielen? Wie beeinflusst die Gestaltung der Räume, Level und Topografien die Entscheidungen und das Verhalten der Spieler_innen? Ist der Brutalismus der erste genuine Architekturstil der Computerspiele? Welche Bedeutung haben Landschaftsgärten und Nationalparks im Strukturieren von Spielwelten? Wie wird Natur in Zeiten des Klimawandels dargestellt? Insbesondere in den letzten 20 Jahren adaptieren digitale Spielwelten akribischer denn je Merkmale der physisch-realen Welt. Durch aufwändige Produktionsverfahren und komplexe Visualisierungsstrategien wird die Angleichung an unsere übrige Alltagswelt stets in Abhängigkeit von Spielmechanik und Weltlichkeit erzeugt. Wie sich spätestens am Beispiel der Open-World-Spiele zeigt, führt die Übernahme bestimmter Weltbilder und Bildtraditionen zu ideologischen Implikationen, die weit über die bisher im Fokus der Forschung stehenden, aus anderen Medienformaten transferierten Erzählkonventionen hinausgehen. Mit seiner Theorie der Architektur als medialem Scharnier legt der Autor offen, dass digitale Spielwelten medienspezifische Eigenschaften aufweisen, die bisher nicht zu greifen waren und der Erforschung harrten. Durch Verschränken von Konzepten aus u.a. Medienwissenschaft, Game Studies, Philosophie, Architekturtheorie, Humangeografie, Landschaftstheorie und Kunstgeschichte erarbeitet Bonner ein transdisziplinäres Theoriemodell und ermöglicht anhand der daraus entwickelten analytischen Methoden erstmals, die komplexe Struktur heutiger Computerspiele - vom Indie Game bis zur AAA Open World - zu verstehen und zu benennen. Mit "Offene-Welt-Strukturen" wird die Architektonik digitaler Spielwelten umfassend zugänglich

    Doing the heavy lifting: the experiences of working-class professional services and administrative staff in Russell Group universities

    Get PDF
    In recent years, UK higher education has pursued more inclusive practices, adopting widening participation metrics, removing historically problematic statues, reviewing research culture environments, and renaming university buildings (Chigudu, 2021; Heath et al, 2013). Research has sought to understand how people from different 'non-traditional' backgrounds experience these institutions (Reay, 2017b). At present, studies of social class focus on the experiences of working-class academics and working-class students (Crew, 2020; Crozier et al., 2019). Academic research has not yet addressed the experiences of working-class professional services and administrative staff, who form a critical part of the political economy of knowledge production. This study used an interpretative approach, combining narrative inquiry and semi-structured interview questions to elucidate the narratives of 13 working-class professional service staff working in Russell Group universities. This thesis makes contributions from conceptual, empirical, theoretical and practical perspectives. Conceptually, a working-class identity, for the participants in this study, is formed from a multitude of varying characteristics, rather than a traditional association with employment and labour. Participants refer to their working-class identity through family history, occupations, deprivation and taste. Empirically, participants felt supported by their immediate networks but often at the price of uncomfortable relationships with academics. Here, a lack of value was made visceral by toxic behaviour, substandard remuneration, poor career progression, isolation and not being listened to in meetings. Concerning theory, I find a ubiquity with the use of Bourdieu in working-class studies. Yet, there is a disparity between theory and participant identification and a dislocation between temporalities of space, time and experience that the theories of Bourdieu fail to account for. I find that there is a lamination of field which working-class participants carry through their lives. I question social mobility, a rhetoric accepted as the way disadvantaged people are accepted into elite institutions. This assimilation accepts that middle-class space is normative in juxtaposition with working-class attributes which are seen to be undesirable. Inclusion, not representation, should be the goal of all Higher Education Institutions (HEIs) if they want to embed equity in their workforce. This study works at frontiers of research on social class, developing a space where the experiences of professional services staff might be fully integrated in the cultural fabric of universities. For too long these voices have been ignored and pushed to the margins, I hope this will be the first of many studies to address this injustice
    • …
    corecore