22,275 research outputs found

    Recurrent 3D Pose Sequence Machines

    Full text link
    3D human articulated pose recovery from monocular image sequences is very challenging due to the diverse appearances, viewpoints, occlusions, and also the human 3D pose is inherently ambiguous from the monocular imagery. It is thus critical to exploit rich spatial and temporal long-range dependencies among body joints for accurate 3D pose sequence prediction. Existing approaches usually manually design some elaborate prior terms and human body kinematic constraints for capturing structures, which are often insufficient to exploit all intrinsic structures and not scalable for all scenarios. In contrast, this paper presents a Recurrent 3D Pose Sequence Machine(RPSM) to automatically learn the image-dependent structural constraint and sequence-dependent temporal context by using a multi-stage sequential refinement. At each stage, our RPSM is composed of three modules to predict the 3D pose sequences based on the previously learned 2D pose representations and 3D poses: (i) a 2D pose module extracting the image-dependent pose representations, (ii) a 3D pose recurrent module regressing 3D poses and (iii) a feature adaption module serving as a bridge between module (i) and (ii) to enable the representation transformation from 2D to 3D domain. These three modules are then assembled into a sequential prediction framework to refine the predicted poses with multiple recurrent stages. Extensive evaluations on the Human3.6M dataset and HumanEva-I dataset show that our RPSM outperforms all state-of-the-art approaches for 3D pose estimation.Comment: Published in CVPR 201

    Event-based Vision: A Survey

    Get PDF
    Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes, and output a stream of events that encode the time, location and sign of the brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the order of microseconds), very high dynamic range (140 dB vs. 60 dB), low power consumption, and high pixel bandwidth (on the order of kHz) resulting in reduced motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as low-latency, high speed, and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world
    • …
    corecore