319 research outputs found

    Two-dimensional string notation for representing video sequences

    Full text link
    Most current work on video indexing concentrates on queries which operate over high level semantic information which must be entirely composed and entered manually. We propose an indexing system which is based on spatial information about key objects in a scene. These key objects may be detected automatically, with manual supervision, and tracked through a sequence using one of a number of recently developed techniques. This representation is highly compact and allows rapid resolution of queries specified by iconic example. A number of systems have been produced which use 2D string notations to index digital image libraries. Just as 2D strings provide a compact and tractable indexing notation for digital pictures, a sequence of 2D strings might provide an index for a video or image sequence. To improve further upon this we reduce the representation to the 2D string pair representing the initial frame, and a sequence of edits to these strings. This takes advantage of the continuity between frames to further reduce the size of the notation. By representing video sequences using string edits, a notation has been developed which is compact, and allows querying on the spatial relationships of objects to be performed without rebuilding the majority of the scene. Calculating ranks of objects directly from the edit sequence allows matching with minimal calculation, thus greatly reducing search time. This paper presents the edit sequence notation and algorithms for evaluating queries over image sequences. A number of optimizations which represent a considerably saving in search time is demonstrated in the paper

    Digital Image Access & Retrieval

    Get PDF
    The 33th Annual Clinic on Library Applications of Data Processing, held at the University of Illinois at Urbana-Champaign in March of 1996, addressed the theme of "Digital Image Access & Retrieval." The papers from this conference cover a wide range of topics concerning digital imaging technology for visual resource collections. Papers covered three general areas: (1) systems, planning, and implementation; (2) automatic and semi-automatic indexing; and (3) preservation with the bulk of the conference focusing on indexing and retrieval.published or submitted for publicatio

    Structured Knowledge Representation for Image Retrieval

    Full text link
    We propose a structured approach to the problem of retrieval of images by content and present a description logic that has been devised for the semantic indexing and retrieval of images containing complex objects. As other approaches do, we start from low-level features extracted with image analysis to detect and characterize regions in an image. However, in contrast with feature-based approaches, we provide a syntax to describe segmented regions as basic objects and complex objects as compositions of basic ones. Then we introduce a companion extensional semantics for defining reasoning services, such as retrieval, classification, and subsumption. These services can be used for both exact and approximate matching, using similarity measures. Using our logical approach as a formal specification, we implemented a complete client-server image retrieval system, which allows a user to pose both queries by sketch and queries by example. A set of experiments has been carried out on a testbed of images to assess the retrieval capabilities of the system in comparison with expert users ranking. Results are presented adopting a well-established measure of quality borrowed from textual information retrieval

    A study of spatial data models and their application to selecting information from pictorial databases

    Get PDF
    People have always used visual techniques to locate information in the space surrounding them. However with the advent of powerful computer systems and user-friendly interfaces it has become possible to extend such techniques to stored pictorial information. Pictorial database systems have in the past primarily used mathematical or textual search techniques to locate specific pictures contained within such databases. However these techniques have largely relied upon complex combinations of numeric and textual queries in order to find the required pictures. Such techniques restrict users of pictorial databases to expressing what is in essence a visual query in a numeric or character based form. What is required is the ability to express such queries in a form that more closely matches the user's visual memory or perception of the picture required. It is suggested in this thesis that spatial techniques of search are important and that two of the most important attributes of a picture are the spatial positions and the spatial relationships of objects contained within such pictures. It is further suggested that a database management system which allows users to indicate the nature of their query by visually placing iconic representations of objects on an interface in spatially appropriate positions, is a feasible method by which pictures might be found from a pictorial database. This thesis undertakes a detailed study of spatial techniques using a combination of historical evidence, psychological conclusions and practical examples to demonstrate that the spatial metaphor is an important concept and that pictures can be readily found by visually specifying the spatial positions and relationships between objects contained within them

    An MPEG-7 scheme for semantic content modelling and filtering of digital video

    Get PDF
    Abstract Part 5 of the MPEG-7 standard specifies Multimedia Description Schemes (MDS); that is, the format multimedia content models should conform to in order to ensure interoperability across multiple platforms and applications. However, the standard does not specify how the content or the associated model may be filtered. This paper proposes an MPEG-7 scheme which can be deployed for digital video content modelling and filtering. The proposed scheme, COSMOS-7, produces rich and multi-faceted semantic content models and supports a content-based filtering approach that only analyses content relating directly to the preferred content requirements of the user. We present details of the scheme, front-end systems used for content modelling and filtering and experiences with a number of users

    Structured Knowledge Representation for Image Retrieval

    Get PDF
    We propose a structured approach to the problem of retrieval of images by content and present a description logic that has been devised for the semantic indexing and retrieval of images containing complex objects. As other approaches do, we start from low-level features extracted with image analysis to detect and characterize regions in an image. However, in contrast with feature-based approaches, we provide a syntax to describe segmented regions as basic objects and complex objects as compositions of basic ones. Then we introduce a companion extensional semantics for defining reasoning services, such as retrieval, classification, and subsumption. These services can be used for both exact and approximate matching, using similarity measures. Using our logical approach as a formal specification, we implemented a complete clientserver image retrieval system, which allows a user to pose both queries by sketch and queries by example. A set of experiments has been carried out on a testbed of images to assess the retrieval capabilities of the system in comparison with expert users ranking. Results are presented adopting a well-established measure of quality borrowed from textual information retrieval

    Giving eyes to ICT!, or How does a computer recognize a cow?

    Get PDF
    Het door Schouten en andere onderzoekers op het CWI ontwikkelde systeem berust op het beschrijven van beelden met behulp van fractale meetkunde. De menselijke waarneming blijkt mede daardoor zo efficiënt omdat zij sterk werkt met gelijkenissen. Het ligt dus voor de hand het te zoeken in wiskundige methoden die dat ook doen. Schouten heeft daarom beeldcodering met behulp van 'fractals' onderzocht. Fractals zijn zelfgelijkende meetkundige figuren, opgebouwd door herhaalde transformatie (iteratie) van een eenvoudig basispatroon, dat zich daardoor op steeds kleinere schalen vertakt. Op elk niveau van detaillering lijkt een fractal op zichzelf (Droste-effect). Met fractals kan men vrij eenvoudig bedrieglijk echte natuurvoorstellingen maken. Fractale beeldcodering gaat ervan uit dat het omgekeerde ook geldt: een beeld effectief opslaan in de vorm van de basispatronen van een klein aantal fractals, samen met het voorschrift hoe het oorspronkelijke beeld daaruit te reconstrueren. Het op het CWI in samenwerking met onderzoekers uit Leuven ontwikkelde systeem is mede gebaseerd op deze methode. ISBN 906196502

    Image indexing and retrieval using formal concept analysis.

    Get PDF
    corecore