36 research outputs found

    Doubly sparse models for multiple filter estimation in sparse echoic environments

    Get PDF
    We consider the estimation of multiple time-domain sparse filters from echoic mixtures of several unknown sources, when the sources are sparse in the time-frequency domain. We propose a sparse filter estimation framework consisting of two steps: a) a clustering step to group the time-frequency points of mixtures where only one source is active, for each source; b) a convex optimisation step to estimate the filters based on a time-frequency domain cross-relation. We propose a new wideband formulation of a frequency domain cross-relation, besides the one based on classical narrowband approximation. The solutions of the convex optimisation problem, formed using the cross-relation, are characterised. Numerical evaluation shows the benefit of using the wideband cross-relation for sparse echoic filter estimation. Further, the potential of the proposed framework for blind estimation of sparse echoic filters is demonstrated in a controlled experimental setting where in the proposed approach outperforms the state of the art blind filter estimation techniques, when the filters are sufficiently sparse

    Post-nonlinear speech mixture identification using single-source temporal zones & curve clustering

    Get PDF
    International audienceIn this paper, we propose a method for estimating the nonlinearities which hold in post-nonlinear source separation. In particular and contrary to the state-of-art methods, our proposed approach uses a weak joint-sparsity sources assumption: we look for tiny temporal zones where only one source is active. This method is well suited to non-stationary signals such as speech. The main novelty of our work consists of using nonlinear single-source confidence measures and curve clustering. Such an approach may be seen as an extension of linear instantaneous sparse component analysis to post-nonlinear mixtures. The performance of the approach is illustrated with some tests showing that the nonlinear functions are estimated accurately, with mean square errors around 4e-5 when the sources are " strongly" mixed

    Efficient Multiband Algorithms for Blind Source Separation

    Get PDF
    The problem of blind separation refers to recovering original signals, called source signals, from the mixed signals, called observation signals, in a reverberant environment. The mixture is a function of a sequence of original speech signals mixed in a reverberant room. The objective is to separate mixed signals to obtain the original signals without degradation and without prior information of the features of the sources. The strategy used to achieve this objective is to use multiple bands that work at a lower rate, have less computational cost and a quicker convergence than the conventional scheme. Our motivation is the competitive results of unequal-passbands scheme applications, in terms of the convergence speed. The objective of this research is to improve unequal-passbands schemes by improving the speed of convergence and reducing the computational cost. The first proposed work is a novel maximally decimated unequal-passbands scheme.This scheme uses multiple bands that make it work at a reduced sampling rate, and low computational cost. An adaptation approach is derived with an adaptation step that improved the convergence speed. The performance of the proposed scheme was measured in different ways. First, the mean square errors of various bands are measured and the results are compared to a maximally decimated equal-passbands scheme, which is currently the best performing method. The results show that the proposed scheme has a faster convergence rate than the maximally decimated equal-passbands scheme. Second, when the scheme is tested for white and coloured inputs using a low number of bands, it does not yield good results; but when the number of bands is increased, the speed of convergence is enhanced. Third, the scheme is tested for quick changes. It is shown that the performance of the proposed scheme is similar to that of the equal-passbands scheme. Fourth, the scheme is also tested in a stationary state. The experimental results confirm the theoretical work. For more challenging scenarios, an unequal-passbands scheme with over-sampled decimation is proposed; the greater number of bands, the more efficient the separation. The results are compared to the currently best performing method. Second, an experimental comparison is made between the proposed multiband scheme and the conventional scheme. The results show that the convergence speed and the signal-to-interference ratio of the proposed scheme are higher than that of the conventional scheme, and the computation cost is lower than that of the conventional scheme

    Robust variational Bayesian clustering for underdetermined speech separation

    Get PDF
    The main focus of this thesis is the enhancement of the statistical framework employed for underdetermined T-F masking blind separation of speech. While humans are capable of extracting a speech signal of interest in the presence of other interference and noise; actual speech recognition systems and hearing aids cannot match this psychoacoustic ability. They perform well in noise and reverberant free environments but suffer in realistic environments. Time-frequency masking algorithms based on computational auditory scene analysis attempt to separate multiple sound sources from only two reverberant stereo mixtures. They essentially rely on the sparsity that binaural cues exhibit in the time-frequency domain to generate masks which extract individual sources from their corresponding spectrogram points to solve the problem of underdetermined convolutive speech separation. Statistically, this can be interpreted as a classical clustering problem. Due to analytical simplicity, a finite mixture of Gaussian distributions is commonly used in T-F masking algorithms for modelling interaural cues. Such a model is however sensitive to outliers, therefore, a robust probabilistic model based on the Student's t-distribution is first proposed to improve the robustness of the statistical framework. This heavy tailed distribution, as compared to the Gaussian distribution, can potentially better capture outlier values and thereby lead to more accurate probabilistic masks for source separation. This non-Gaussian approach is applied to the state-of the-art MESSL algorithm and comparative studies are undertaken to confirm the improved separation quality. A Bayesian clustering framework that can better model uncertainties in reverberant environments is then exploited to replace the conventional expectation-maximization (EM) algorithm within a maximum likelihood estimation (MLE) framework. A variational Bayesian (VB) approach is then applied to the MESSL algorithm to cluster interaural phase differences thereby avoiding the drawbacks of MLE; specifically the probable presence of singularities and experimental results confirm an improvement in the separation performance. Finally, the joint modelling of the interaural phase and level differences and the integration of their non-Gaussian modelling within a variational Bayesian framework, is proposed. This approach combines the advantages of the robust estimation provided by the Student's t-distribution and the robust clustering inherent in the Bayesian approach. In other words, this general framework avoids the difficulties associated with MLE and makes use of the heavy tailed Student's t-distribution to improve the estimation of the soft probabilistic masks at various reverberation times particularly for sources in close proximity. Through an extensive set of simulation studies which compares the proposed approach with other T-F masking algorithms under different scenarios, a significant improvement in terms of objective and subjective performance measures is achieved

    Blind source separation via independent and sparse component analysis with application to temporomandibular disorder

    Get PDF
    Blind source separation (BSS) addresses the problem of separating multi channel signals observed by generally spatially separated sensors into their constituent underlying sources. The passage of these sources through an unknown mixing medium results in these observed multichannel signals. This study focuses on BSS, with special emphasis on its application to the temporomandibular joint disorder (TMD). TMD refers to all medical problems related to the temporomandibular joint (TMJ), which holds the lower jaw (mandible) and the temporal bone (skull). The overall objective of the work is to extract the two TMJ sound sources generated by the two TMJs, from the bilateral recordings obtained from the auditory canals, so as to aid the clinician in diagnosis and planning treatment policies. Firstly, the concept of 'variable tap length' is adopted in convolutive blind source separation. This relatively new concept has attracted attention in the field of adaptive signal processing, notably the least mean square (LMS) algorithm, but has not yet been introduced in the context of blind signal separation. The flexibility of the tap length of the proposed approach allows for the optimum tap length to be found, thereby mitigating computational complexity or catering for fractional delays arising in source separation. Secondly, a novel fixed point BSS algorithm based on Ferrante's affine transformation is proposed. Ferrante's affine transformation provides the freedom to select the eigenvalues of the Jacobian matrix of the fixed point function and thereby improves the convergence properties of the fixed point iteration. Simulation studies demonstrate the improved convergence of the proposed approach compared to the well-known fixed point FastICA algorithm. Thirdly, the underdetermined blind source separation problem using a filtering approach is addressed. An extension of the FastICA algorithm is devised which exploits the disparity in the kurtoses of the underlying sources to estimate the mixing matrix and thereafter achieves source recovery by employing the i-norm algorithm. Additionally, it will be shown that FastICA can also be utilised to extract the sources. Furthermore, it is illustrated how this scenario is particularly suitable for the separation of TMJ sounds. Finally, estimation of fractional delays between the mixtures of the TMJ sources is proposed as a means for TMJ separation. The estimation of fractional delays is shown to simplify the source separation to a case of in stantaneous BSS. Then, the estimated delay allows for an alignment of the TMJ mixtures, thereby overcoming a spacing constraint imposed by a well- known BSS technique, notably the DUET algorithm. The delay found from the TMJ bilateral recordings corroborates with the range reported in the literature. Furthermore, TMJ source localisation is also addressed as an aid to the dental specialist.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Blind source separation via independent and sparse component analysis with application to temporomandibular disorder

    Get PDF
    Blind source separation (BSS) addresses the problem of separating multi channel signals observed by generally spatially separated sensors into their constituent underlying sources. The passage of these sources through an unknown mixing medium results in these observed multichannel signals. This study focuses on BSS, with special emphasis on its application to the temporomandibular joint disorder (TMD). TMD refers to all medical problems related to the temporomandibular joint (TMJ), which holds the lower jaw (mandible) and the temporal bone (skull). The overall objective of the work is to extract the two TMJ sound sources generated by the two TMJs, from the bilateral recordings obtained from the auditory canals, so as to aid the clinician in diagnosis and planning treatment policies. Firstly, the concept of 'variable tap length' is adopted in convolutive blind source separation. This relatively new concept has attracted attention in the field of adaptive signal processing, notably the least mean square (LMS) algorithm, but has not yet been introduced in the context of blind signal separation. The flexibility of the tap length of the proposed approach allows for the optimum tap length to be found, thereby mitigating computational complexity or catering for fractional delays arising in source separation. Secondly, a novel fixed point BSS algorithm based on Ferrante's affine transformation is proposed. Ferrante's affine transformation provides the freedom to select the eigenvalues of the Jacobian matrix of the fixed point function and thereby improves the convergence properties of the fixed point iteration. Simulation studies demonstrate the improved convergence of the proposed approach compared to the well-known fixed point FastICA algorithm. Thirdly, the underdetermined blind source separation problem using a filtering approach is addressed. An extension of the FastICA algorithm is devised which exploits the disparity in the kurtoses of the underlying sources to estimate the mixing matrix and thereafter achieves source recovery by employing the i-norm algorithm. Additionally, it will be shown that FastICA can also be utilised to extract the sources. Furthermore, it is illustrated how this scenario is particularly suitable for the separation of TMJ sounds. Finally, estimation of fractional delays between the mixtures of the TMJ sources is proposed as a means for TMJ separation. The estimation of fractional delays is shown to simplify the source separation to a case of in stantaneous BSS. Then, the estimated delay allows for an alignment of the TMJ mixtures, thereby overcoming a spacing constraint imposed by a well- known BSS technique, notably the DUET algorithm. The delay found from the TMJ bilateral recordings corroborates with the range reported in the literature. Furthermore, TMJ source localisation is also addressed as an aid to the dental specialist.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Blind source separation via independent and sparse component analysis with application to temporomandibular disorder

    Get PDF
    Blind source separation (BSS) addresses the problem of separating multi channel signals observed by generally spatially separated sensors into their constituent underlying sources. The passage of these sources through an unknown mixing medium results in these observed multichannel signals. This study focuses on BSS, with special emphasis on its application to the temporomandibular joint disorder (TMD). TMD refers to all medical problems related to the temporomandibular joint (TMJ), which holds the lower jaw (mandible) and the temporal bone (skull). The overall objective of the work is to extract the two TMJ sound sources generated by the two TMJs, from the bilateral recordings obtained from the auditory canals, so as to aid the clinician in diagnosis and planning treatment policies. Firstly, the concept of 'variable tap length' is adopted in convolutive blind source separation. This relatively new concept has attracted attention in the field of adaptive signal processing, notably the least mean square (LMS) algorithm, but has not yet been introduced in the context of blind signal separation. The flexibility of the tap length of the proposed approach allows for the optimum tap length to be found, thereby mitigating computational complexity or catering for fractional delays arising in source separation. Secondly, a novel fixed point BSS algorithm based on Ferrante's affine transformation is proposed. Ferrante's affine transformation provides the freedom to select the eigenvalues of the Jacobian matrix of the fixed point function and thereby improves the convergence properties of the fixed point iteration. Simulation studies demonstrate the improved convergence of the proposed approach compared to the well-known fixed point FastICA algorithm. Thirdly, the underdetermined blind source separation problem using a filtering approach is addressed. An extension of the FastICA algorithm is devised which exploits the disparity in the kurtoses of the underlying sources to estimate the mixing matrix and thereafter achieves source recovery by employing the i-norm algorithm. Additionally, it will be shown that FastICA can also be utilised to extract the sources. Furthermore, it is illustrated how this scenario is particularly suitable for the separation of TMJ sounds. Finally, estimation of fractional delays between the mixtures of the TMJ sources is proposed as a means for TMJ separation. The estimation of fractional delays is shown to simplify the source separation to a case of in stantaneous BSS. Then, the estimated delay allows for an alignment of the TMJ mixtures, thereby overcoming a spacing constraint imposed by a well- known BSS technique, notably the DUET algorithm. The delay found from the TMJ bilateral recordings corroborates with the range reported in the literature. Furthermore, TMJ source localisation is also addressed as an aid to the dental specialist
    corecore