74 research outputs found

    Three more Decades in Array Signal Processing Research: An Optimization and Structure Exploitation Perspective

    Full text link
    The signal processing community currently witnesses the emergence of sensor array processing and Direction-of-Arrival (DoA) estimation in various modern applications, such as automotive radar, mobile user and millimeter wave indoor localization, drone surveillance, as well as in new paradigms, such as joint sensing and communication in future wireless systems. This trend is further enhanced by technology leaps and availability of powerful and affordable multi-antenna hardware platforms. The history of advances in super resolution DoA estimation techniques is long, starting from the early parametric multi-source methods such as the computationally expensive maximum likelihood (ML) techniques to the early subspace-based techniques such as Pisarenko and MUSIC. Inspired by the seminal review paper Two Decades of Array Signal Processing Research: The Parametric Approach by Krim and Viberg published in the IEEE Signal Processing Magazine, we are looking back at another three decades in Array Signal Processing Research under the classical narrowband array processing model based on second order statistics. We revisit major trends in the field and retell the story of array signal processing from a modern optimization and structure exploitation perspective. In our overview, through prominent examples, we illustrate how different DoA estimation methods can be cast as optimization problems with side constraints originating from prior knowledge regarding the structure of the measurement system. Due to space limitations, our review of the DoA estimation research in the past three decades is by no means complete. For didactic reasons, we mainly focus on developments in the field that easily relate the traditional multi-source estimation criteria and choose simple illustrative examples.Comment: 16 pages, 8 figures. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Sparsity in array processing: methods and performances

    No full text
    International audienceIn the last few years, we witnessed to an extraordinary and still growing development of sparse signal recovery in a wide number of applicative contexts such as communications, biomedicine, radar, microwave imaging, source localization, astronomy, seismology... In many realistic array processing applications, the sparsity nature underlying various signals/arrays has to be exploit in recovery algorithms to enhance their performances. In this special session, most recent results in estimators based on sparsity-­‐promoting criteria is proposed

    Low complexity DOA estimation for wideband off-grid sources based on re-focused compressive sensing with dynamic dictionary

    Get PDF
    Under the compressive sensing (CS) framework, a novel focusing based direction of arrival (DOA) estimation method is first proposed for wideband off-grid sources, and by avoiding the application of group sparsity (GS) across frequencies of interest, significant complexity reduction is achieved with its computational complexity close to that of solving a single frequency based direction finding problem. To further improve the performance by alleviating both the off-grid approximation errors and the focusing errors which are even worse for the off-grid case, a dynamic dictionary based re-focused off-grid DOA estimation method is developed with the number of extremely sparse grids involved in estimation refined to the number of detected sources, and thus the complexity is still very low due to the limited increased complexity introduced by iterations, while improved performance can be achieved compared with those fixed dictionary based off-grid methods

    Underdetermined DOA Estimation Under the Compressive Sensing Framework: A Review

    Get PDF
    Direction of arrival (DOA) estimation from the perspective of sparse signal representation has attracted tremendous attention in past years, where the underlying spatial sparsity reconstruction problem is linked to the compressive sensing (CS) framework. Although this is an area with ongoing intensive research and new methods and results are reported regularly, it is time to have a review about the basic approaches and methods for CS-based DOA estimation, in particular for the underdetermined case. We start from the basic time-domain CSbased formulation for narrowband arrays and then move to the case for recently developed methods for sparse arrays based on the co-array concept. After introducing two specifically designed structures (the two-level nested array and the co-prime array) for optimizing the virtual sensors corresponding to the difference coarray, this CS-based DOA estimation approach is extended to the wideband case by employing the group sparsity concept, where a much larger physical aperture can be achieved by allowing a larger unit inter-element spacing and therefore leading to further improved performance. Finally, a specifically designed ULA structure with associated CS-based underdetermined DOA estimation is presented to exploit the difference co-array concept in the spatio-spectral domain, leading to a significant increase in DOFs. Representative simulation results for typical narrowband and wideband scenarios are provided to demonstrate their performance

    Alternating projections gridless covariance-based estimation for DOA

    Full text link
    We present a gridless sparse iterative covariance-based estimation method based on alternating projections for direction-of-arrival (DOA) estimation. The gridless DOA estimation is formulated in the reconstruction of Toeplitz-structured low rank matrix, and is solved efficiently with alternating projections. The method improves resolution by achieving sparsity, deals with single-snapshot data and coherent arrivals, and, with co-prime arrays, estimates more DOAs than the number of sensors. We evaluate the proposed method using simulation results focusing on co-prime arrays.Comment: 5 pages, accepted by (ICASSP 2021) 2021 IEEE International Conference on Acoustics, Speech, and Signal Processin

    Wideband DOA Estimation with Frequency Decomposition via a Unified GS-WSpSF Framework

    Get PDF
    A unified group sparsity based framework for wideband sparse spectrum fitting (GS-WSpSF) is proposed for wideband direction-of-arrival (DOA) estimation, which is capable of handling both uncorrelated and correlated sources. Then, by making four different assumptions on a priori knowledge about the sources, four variants under the proposed framework are formulated as solutions to the underdetermined DOA estimation problem without the need of employing sparse arrays. As verified by simulations, improved estimation performance can be achieved by the wideband methods compared with narrowband ones, and adopting more a priori information leads to better performance in terms of resolution capacity and estimation accuracy
    corecore