429 research outputs found

    Community Detection in Complex Networks

    Get PDF
    Finding communities of connected individuals in social networks is essential for understanding our society and interactions within the network. Recently attention has turned to analyse these communities in complex network systems. In this thesis, we study three challenges. Firstly, analysing and evaluating the robustness of new and existing score functions as these functions are used to assess the community structure for a given network. Secondly, unfolding community structures in static social networks. Finally, detecting the dynamics of communities that change over time. The score functions are evaluated on different community structures. The behaviour of these functions is studied by migrating nodes randomly from their community to a random community in a given true partition until all nodes will be migrated far from their communities. Then Multi-Objective Evolutionary Algorithm Based Community Detection in Social Networks (MOEA-CD) is used to capture the intuition of community identi cation with dense connections within the community and sparse with others. This algorithm redirects the design of objective functions according to the nodes' relations within community and with other communities. This new model includes two new contradictory objectives, the rst is to maximise the internal neighbours for each node within a community and the second is to minimise the maximum external links for each node within a community with respect to its internal neighbours. Both of these objectives are optimised simultaneously to nd a set of estimated Pareto-optimal solutions where each solution corresponds to a network partition. Moreover, we propose a new local heuristic search, namely, the Neighbour Node Centrality (NNC) strategy which is combined with the proposed model to improve the performance of MOEA-CD to nd a local optimal solution. We also design an algorithm which produces community structures that evolve over time. Recognising that there may be many possible community structures that ex- plain the observed social network at each time step, in contrast to existing methods, which generally treat this as a coupled optimisation problem, we formulate the prob- lem in a Hidden Markov Model framework, which allows the most likely sequence of communities to be found using the Viterbi algorithm where there are many candi- date community structures which are generated using Multi-Objective Evolutionary Algorithm. To demonstrate that our study is effective, it is evaluated on synthetic and real-life dynamic networks and it is used to discover the changing Twitter communities of MPs preceding the Brexit referendum

    Community Detection in Complex Networks

    Get PDF
    Finding communities of connected individuals in social networks is essential for understanding our society and interactions within the network. Recently attention has turned to analyse these communities in complex network systems. In this thesis, we study three challenges. Firstly, analysing and evaluating the robustness of new and existing score functions as these functions are used to assess the community structure for a given network. Secondly, unfolding community structures in static social networks. Finally, detecting the dynamics of communities that change over time. The score functions are evaluated on different community structures. The behaviour of these functions is studied by migrating nodes randomly from their community to a random community in a given true partition until all nodes will be migrated far from their communities. Then Multi-Objective Evolutionary Algorithm Based Community Detection in Social Networks (MOEA-CD) is used to capture the intuition of community identi cation with dense connections within the community and sparse with others. This algorithm redirects the design of objective functions according to the nodes' relations within community and with other communities. This new model includes two new contradictory objectives, the rst is to maximise the internal neighbours for each node within a community and the second is to minimise the maximum external links for each node within a community with respect to its internal neighbours. Both of these objectives are optimised simultaneously to nd a set of estimated Pareto-optimal solutions where each solution corresponds to a network partition. Moreover, we propose a new local heuristic search, namely, the Neighbour Node Centrality (NNC) strategy which is combined with the proposed model to improve the performance of MOEA-CD to nd a local optimal solution. We also design an algorithm which produces community structures that evolve over time. Recognising that there may be many possible community structures that ex- plain the observed social network at each time step, in contrast to existing methods, which generally treat this as a coupled optimisation problem, we formulate the prob- lem in a Hidden Markov Model framework, which allows the most likely sequence of communities to be found using the Viterbi algorithm where there are many candi- date community structures which are generated using Multi-Objective Evolutionary Algorithm. To demonstrate that our study is effective, it is evaluated on synthetic and real-life dynamic networks and it is used to discover the changing Twitter communities of MPs preceding the Brexit referendum

    Designing problem-specific operators for solving the Cell Switch-Off problem in ultra-dense 5G networks with hybrid MOEAs

    Get PDF
    The massive deployment of base stations is one of the key pillars of the fifth generation (5G) of mobile communications. However, this network densification entails high energy consumption that must be addressed to enhance the sustainability of this industry. This work faces this problem from a multi-objective optimization perspective, in which both energy efficiency and quality of service criteria are taken into account. To do so, several newly problem-specific operators have been designed so as to engineer hybrid multi-objective evolutionary metaheuristics (MOEAs) that bring expert knowledge of the domain to the search of the algorithms. These hybrid approaches have been able to improve upon canonical versions of the algorithms, clearly showing the contributions of our approach. Furthermore, this paper tests the hypothesis that the hybridization using several of those problem-specific operators simultaneously can enhance the search of MOEAs that are endowed only with a single one.Funding for open access charge: Universidad de Málaga / CBUA This work has been partially funded by the Spanish Ministry of Science and Innovation via grant PID2020-112545RB-C54, by the European Union NextGenerationEU/PRTR under grants TED2021-131699B-I00 and TED2021-129938B-I00 (MCIN/AEI/10.13039/501100011033, FEDER) and the Andalusian PAIDI program with grants A-TIC-608-UGR20, P18.RT.4830, and PYC20-RE-012-UGR. The authors also thank the Supercomputing and Bioinformatics Center of the Universidad de Málaga, for providing its services and the Picasso supercomputer facilities to perform the experiments (http://www.scbi.uma.es/). Funding for open access charge: Universidad de Málaga/CBUA

    Clustering Algorithms: Their Application to Gene Expression Data

    Get PDF
    Gene expression data hide vital information required to understand the biological process that takes place in a particular organism in relation to its environment. Deciphering the hidden patterns in gene expression data proffers a prodigious preference to strengthen the understanding of functional genomics. The complexity of biological networks and the volume of genes present increase the challenges of comprehending and interpretation of the resulting mass of data, which consists of millions of measurements; these data also inhibit vagueness, imprecision, and noise. Therefore, the use of clustering techniques is a first step toward addressing these challenges, which is essential in the data mining process to reveal natural structures and iden-tify interesting patterns in the underlying data. The clustering of gene expression data has been proven to be useful in making known the natural structure inherent in gene expression data, understanding gene functions, cellular processes, and subtypes of cells, mining useful information from noisy data, and understanding gene regulation. The other benefit of clustering gene expression data is the identification of homology, which is very important in vaccine design. This review examines the various clustering algorithms applicable to the gene expression data in order to discover and provide useful knowledge of the appropriate clustering technique that will guarantee stability and high degree of accuracy in its analysis procedure

    Regularized logistic regression and multi-objective variable selection for classifying MEG data

    Get PDF
    This paper addresses the question of maximizing classifier accuracy for classifying task-related mental activity from Magnetoencelophalography (MEG) data. We propose the use of different sources of information and introduce an automatic channel selection procedure. To determine an informative set of channels, our approach combines a variety of machine learning algorithms: feature subset selection methods, classifiers based on regularized logistic regression, information fusion, and multiobjective optimization based on probabilistic modeling of the search space. The experimental results show that our proposal is able to improve classification accuracy compared to approaches whose classifiers use only one type of MEG information or for which the set of channels is fixed a priori
    corecore