710 research outputs found

    A Late Multi-Modal Fusion Model for Detecting Hybrid Spam E-mail

    Get PDF
    In recent years, spammers are now trying to obfuscate their intents by introducing hybrid spam e-mail combining both image and text parts, which is more challenging to detect in comparison to e-mails containing text or image only. The motivation behind this research is to design an effective approach filtering out hybrid spam e-mails to avoid situations where traditional text-based or image-baesd only filters fail to detect hybrid spam e-mails. To the best of our knowledge, a few studies have been conducted with the goal of detecting hybrid spam e-mails. Ordinarily, Optical Character Recognition (OCR) technology is used to eliminate the image parts of spam by transforming images into text. However, the research questions are that although OCR scanning is a very successful technique in processing text-and-image hybrid spam, it is not an effective solution for dealing with huge quantities due to the CPU power required and the execution time it takes to scan e-mail files. And the OCR techniques are not always reliable in the transformation processes. To address such problems, we propose new late multi-modal fusion training frameworks for a text-and-image hybrid spam e-mail filtering system compared to the classical early fusion detection frameworks based on the OCR method. Convolutional Neural Network (CNN) and Continuous Bag of Words were implemented to extract features from image and text parts of hybrid spam respectively, whereas generated features were fed to sigmoid layer and Machine Learning based classifiers including Random Forest (RF), Decision Tree (DT), Naive Bayes (NB) and Support Vector Machine (SVM) to determine the e-mail ham or spam.Comment: Accepted by 2023 the 2nd International Conference on Mechatronics and Electrical Engineering (MEEE 2023

    Validating Multimedia Content Moderation Software via Semantic Fusion

    Full text link
    The exponential growth of social media platforms, such as Facebook and TikTok, has revolutionized communication and content publication in human society. Users on these platforms can publish multimedia content that delivers information via the combination of text, audio, images, and video. Meanwhile, the multimedia content release facility has been increasingly exploited to propagate toxic content, such as hate speech, malicious advertisements, and pornography. To this end, content moderation software has been widely deployed on these platforms to detect and blocks toxic content. However, due to the complexity of content moderation models and the difficulty of understanding information across multiple modalities, existing content moderation software can fail to detect toxic content, which often leads to extremely negative impacts. We introduce Semantic Fusion, a general, effective methodology for validating multimedia content moderation software. Our key idea is to fuse two or more existing single-modal inputs (e.g., a textual sentence and an image) into a new input that combines the semantics of its ancestors in a novel manner and has toxic nature by construction. This fused input is then used for validating multimedia content moderation software. We realized Semantic Fusion as DUO, a practical content moderation software testing tool. In our evaluation, we employ DUO to test five commercial content moderation software and two state-of-the-art models against three kinds of toxic content. The results show that DUO achieves up to 100% error finding rate (EFR) when testing moderation software. In addition, we leverage the test cases generated by DUO to retrain the two models we explored, which largely improves model robustness while maintaining the accuracy on the original test set.Comment: Accepted by ISSTA 202

    Detecting Abnormal Social Robot Behavior through Emotion Recognition

    Get PDF
    Sharing characteristics with both the Internet of Things and the Cyber Physical Systems categories, a new type of device has arrived to claim a third category and raise its very own privacy concerns. Social robots are in the market asking consumers to become part of their daily routine and interactions. Ranging in the level and method of communication with the users, all social robots are able to collect, share and analyze a great variety and large volume of personal data.In this thesis, we focus the community’s attention to this emerging area of interest for privacy and security research. We discuss the likely privacy issues, comment on current defense mechanisms that are applicable to this new category of devices, outline new forms of attack that are made possible through social robots, highlight paths that research on consumer perceptions could follow, and propose a system for detecting abnormal social robot behavior based on emotion detection

    Innovative machine learning techniques for security detection problems

    Full text link
    University of Technology, Sydney. Faculty of Engineering and Information Technology.Most of the currently available network security techniques cannot cope with the dynamic and increasingly complex nature of the attacks on distributed computer systems. Therefore, an automated and adaptive defensive tool is imperative for computer networks. Alongside the existing techniques for preventing intrusions such as encryption and firewalls, Intrusion Detection System (IDS) technology has established itself as an emerging field that is able to detect unauthorized access and abuse of computer systems from both internal users and external offenders. Most of the novel approaches in this field have adopted Artificial Intelligence (AI) technologies such as Artificial Neural Networks (ANN) to improve detection performance. The true power and advantage of ANN lie in its ability to represent both linear and non-linear underlying functions and learn these functions directly from the data being modeled. However, ANN is computationally expensive due to its demanding processing power and this leads to the overfitting problem, i.e. the network is unable to extrapolate accurately once the input is outside of the training data range. These limitations challenge security systems with low detection rate, high false alarm rate and excessive computation cost. In this research, a novel Machine Learning (ML) algorithm is developed to alleviate those difficulties of conventional detection techniques used in available IDS. By implementing Adaptive Boosting and Semi-parametric radial-basis-function neural networks, this model aims at minimizing learning bias (how well the model fits the available sample data) and generalization variance (how stable the model is for unseen instances) at an affordable cost of computation. The proposed method is applied to a set of Security Detection Problems which aim to detect security breaches within computer networks. In particular, we consider two benchmarking problems: intrusion detection and anti-spam filtering. It is empirically shown that our technique outperforms other state-of-the-art predictive algorithms in both of the problems, with significantly increased detection accuracy, minimal false alarms and relatively low computation

    Visual Concept Detection in Images and Videos

    Get PDF
    The rapidly increasing proliferation of digital images and videos leads to a situation where content-based search in multimedia databases becomes more and more important. A prerequisite for effective image and video search is to analyze and index media content automatically. Current approaches in the field of image and video retrieval focus on semantic concepts serving as an intermediate description to bridge the “semantic gap” between the data representation and the human interpretation. Due to the large complexity and variability in the appearance of visual concepts, the detection of arbitrary concepts represents a very challenging task. In this thesis, the following aspects of visual concept detection systems are addressed: First, enhanced local descriptors for mid-level feature coding are presented. Based on the observation that scale-invariant feature transform (SIFT) descriptors with different spatial extents yield large performance differences, a novel concept detection system is proposed that combines feature representations for different spatial extents using multiple kernel learning (MKL). A multi-modal video concept detection system is presented that relies on Bag-of-Words representations for visual and in particular for audio features. Furthermore, a method for the SIFT-based integration of color information, called color moment SIFT, is introduced. Comparative experimental results demonstrate the superior performance of the proposed systems on the Mediamill and on the VOC Challenge. Second, an approach is presented that systematically utilizes results of object detectors. Novel object-based features are generated based on object detection results using different pooling strategies. For videos, detection results are assembled to object sequences and a shot-based confidence score as well as further features, such as position, frame coverage or movement, are computed for each object class. These features are used as additional input for the support vector machine (SVM)-based concept classifiers. Thus, other related concepts can also profit from object-based features. Extensive experiments on the Mediamill, VOC and TRECVid Challenge show significant improvements in terms of retrieval performance not only for the object classes, but also in particular for a large number of indirectly related concepts. Moreover, it has been demonstrated that a few object-based features are beneficial for a large number of concept classes. On the VOC Challenge, the additional use of object-based features led to a superior performance for the image classification task of 63.8% mean average precision (AP). Furthermore, the generalization capabilities of concept models are investigated. It is shown that different source and target domains lead to a severe loss in concept detection performance. In these cross-domain settings, object-based features achieve a significant performance improvement. Since it is inefficient to run a large number of single-class object detectors, it is additionally demonstrated how a concurrent multi-class object detection system can be constructed to speed up the detection of many object classes in images. Third, a novel, purely web-supervised learning approach for modeling heterogeneous concept classes in images is proposed. Tags and annotations of multimedia data in the WWW are rich sources of information that can be employed for learning visual concepts. The presented approach is aimed at continuous long-term learning of appearance models and improving these models periodically. For this purpose, several components have been developed: a crawling component, a multi-modal clustering component for spam detection and subclass identification, a novel learning component, called “random savanna”, a validation component, an updating component, and a scalability manager. Only a single word describing the visual concept is required to initiate the learning process. Experimental results demonstrate the capabilities of the individual components. Finally, a generic concept detection system is applied to support interdisciplinary research efforts in the field of psychology and media science. The psychological research question addressed in the field of behavioral sciences is, whether and how playing violent content in computer games may induce aggression. Therefore, novel semantic concepts most notably “violence” are detected in computer game videos to gain insights into the interrelationship of violent game events and the brain activity of a player. Experimental results demonstrate the excellent performance of the proposed automatic concept detection approach for such interdisciplinary research

    A discrete hidden Markov model for SMS spam detection

    Get PDF
    Many machine learning methods have been applied for short messaging service (SMS) spam detection, including traditional methods such as naive Bayes (NB), vector space model (VSM), and support vector machine (SVM), and novel methods such as long short-term memory (LSTM) and the convolutional neural network (CNN). These methods are based on the well-known bag of words (BoW) model, which assumes documents are unordered collection of words. This assumption overlooks an important piece of information, i.e., word order. Moreover, the term frequency, which counts the number of occurrences of each word in SMS, is unable to distinguish the importance of words, due to the length limitation of SMS. This paper proposes a new method based on the discrete hidden Markov model (HMM) to use the word order information and to solve the low term frequency issue in SMS spam detection. The popularly adopted SMS spam dataset from the UCI machine learning repository is used for performance analysis of the proposed HMM method. The overall performance is compatible with deep learning by employing CNN and LSTM models. A Chinese SMS spam dataset with 2000 messages is used for further performance evaluation. Experiments show that the proposed HMM method is not language-sensitive and can identify spam with high accuracy on both datasets
    corecore