24,497 research outputs found

    The CIAO Multi-Dialect Compiler and System: An Experimentation Workbench for Future (C)LP Systems

    Full text link
    CIAO is an advanced programming environment supporting Logic and Constraint programming. It offers a simple concurrent kernel on top of which declarative and non-declarative extensions are added via librarles. Librarles are available for supporting the ISOProlog standard, several constraint domains, functional and higher order programming, concurrent and distributed programming, internet programming, and others. The source language allows declaring properties of predicates via assertions, including types and modes. Such properties are checked at compile-time or at run-time. The compiler and system architecture are designed to natively support modular global analysis, with the two objectives of proving properties in assertions and performing program optimizations, including transparently exploiting parallelism in programs. The purpose of this paper is to report on recent progress made in the context of the CIAO system, with special emphasis on the capabilities of the compiler, the techniques used for supporting such capabilities, and the results in the áreas of program analysis and transformation already obtained with the system

    Loo.py: transformation-based code generation for GPUs and CPUs

    Full text link
    Today's highly heterogeneous computing landscape places a burden on programmers wanting to achieve high performance on a reasonably broad cross-section of machines. To do so, computations need to be expressed in many different but mathematically equivalent ways, with, in the worst case, one variant per target machine. Loo.py, a programming system embedded in Python, meets this challenge by defining a data model for array-style computations and a library of transformations that operate on this model. Offering transformations such as loop tiling, vectorization, storage management, unrolling, instruction-level parallelism, change of data layout, and many more, it provides a convenient way to capture, parametrize, and re-unify the growth among code variants. Optional, deep integration with numpy and PyOpenCL provides a convenient computing environment where the transition from prototype to high-performance implementation can occur in a gradual, machine-assisted form

    The JStar language philosophy

    Get PDF
    This paper introduces the JStar parallel programming language, which is a Java-based declarative language aimed at discouraging sequential programming, en-couraging massively parallel programming, and giving the compiler and runtime maximum freedom to try alternative parallelisation strategies. We describe the execution semantics and runtime support of the language, several optimisations and parallelism strategies, with some benchmark results
    corecore