1,324 research outputs found

    High performance modified bit-vector based packet classification module on low-cost FPGA

    Get PDF
    The packet classification plays a significant role in many network systems, which requires the incoming packets to be categorized into different flows and must take specific actions as per functional and application requirements. The network system speed is continuously increasing, so the demand for the packet classifier also increased. Also, the packet classifier's complexity is increased further due to multiple fields should match against a large number of rules. In this manuscript, an efficient and high performance modified bitvector (MBV) based packet classification (PC) is designed and implemented on low-cost Artix-7 FPGA. The proposed MBV based PC employs pipelined architecture, which offers low latency and high throughput for PC. The MBV based PC utilizes <2% slices, operating at 493.102 MHz, and consumes 0.1 W total power on Artix-7 FPGA. The proposed PC considers only 4 clock cycles to classify the incoming packets and provides 74.95 Gbps throughput. The comparative results in terms of hardware utilization and performance efficiency of proposed work with existing similar PC approaches are analyzed with better constraints improvement

    Models, Algorithms, and Architectures for Scalable Packet Classification

    Get PDF
    The growth and diversification of the Internet imposes increasing demands on the performance and functionality of network infrastructure. Routers, the devices responsible for the switch-ing and directing of traffic in the Internet, are being called upon to not only handle increased volumes of traffic at higher speeds, but also impose tighter security policies and provide support for a richer set of network services. This dissertation addresses the searching tasks performed by Internet routers in order to forward packets and apply network services to packets belonging to defined traffic flows. As these searching tasks must be performed for each packet traversing the router, the speed and scalability of the solutions to the route lookup and packet classification problems largely determine the realizable performance of the router, and hence the Internet as a whole. Despite the energetic attention of the academic and corporate research communities, there remains a need for search engines that scale to support faster communication links, larger route tables and filter sets and increasingly complex filters. The major contributions of this work include the design and analysis of a scalable hardware implementation of a Longest Prefix Matching (LPM) search engine for route lookup, a survey and taxonomy of packet classification techniques, a thorough analysis of packet classification filter sets, the design and analysis of a suite of performance evaluation tools for packet classification algorithms and devices, and a new packet classification algorithm that scales to support high-speed links and large filter sets classifying on additional packet fields

    A Computational Approach to Packet Classification

    Full text link
    Multi-field packet classification is a crucial component in modern software-defined data center networks. To achieve high throughput and low latency, state-of-the-art algorithms strive to fit the rule lookup data structures into on-die caches; however, they do not scale well with the number of rules. We present a novel approach, NuevoMatch, which improves the memory scaling of existing methods. A new data structure, Range Query Recursive Model Index (RQ-RMI), is the key component that enables NuevoMatch to replace most of the accesses to main memory with model inference computations. We describe an efficient training algorithm that guarantees the correctness of the RQ-RMI-based classification. The use of RQ-RMI allows the rules to be compressed into model weights that fit into the hardware cache. Further, it takes advantage of the growing support for fast neural network processing in modern CPUs, such as wide vector instructions, achieving a rate of tens of nanoseconds per lookup. Our evaluation using 500K multi-field rules from the standard ClassBench benchmark shows a geometric mean compression factor of 4.9x, 8x, and 82x, and average performance improvement of 2.4x, 2.6x, and 1.6x in throughput compared to CutSplit, NeuroCuts, and TupleMerge, all state-of-the-art algorithms.Comment: To appear in SIGCOMM 202

    Many-core and heterogeneous architectures: programming models and compilation toolchains

    Get PDF
    1noL'abstract è presente nell'allegato / the abstract is in the attachmentopen677. INGEGNERIA INFORMATInopartially_openembargoed_20211002Barchi, Francesc

    A survey on scheduling and mapping techniques in 3D Network-on-chip

    Full text link
    Network-on-Chips (NoCs) have been widely employed in the design of multiprocessor system-on-chips (MPSoCs) as a scalable communication solution. NoCs enable communications between on-chip Intellectual Property (IP) cores and allow those cores to achieve higher performance by outsourcing their communication tasks. Mapping and Scheduling methodologies are key elements in assigning application tasks, allocating the tasks to the IPs, and organising communication among them to achieve some specified objectives. The goal of this paper is to present a detailed state-of-the-art of research in the field of mapping and scheduling of applications on 3D NoC, classifying the works based on several dimensions and giving some potential research directions

    Interactive isosurface ray tracing of time-varying tetrahedral volumes

    Get PDF
    Journal ArticleAbstract- We describe a system for interactively rendering isosurfaces of tetrahedral finite-element scalar fields using coherent ray tracing techniques on the CPU. By employing state-of-the art methods in polygonal ray tracing, namely aggressive packet/frustum traversal of a bounding volume hierarchy, we can accomodate large and time-varying unstructured data. In conjunction with this efficiency structure, we introduce a novel technique for intersecting ray packets with tetrahedral primitives. Ray tracing is flexible, allowing for dynamic changes in isovalue and time step, visualization of multiple isosurfaces, shadows, and depth-peeling transparency effects. The resulting system offers the intuitive simplicity of isosurfacing, guaranteed-correct visual results, and ultimately a scalable, dynamic and consistently interactive solution for visualizing unstructured volumes
    corecore