280 research outputs found

    A novel sonification approach to support the diagnosis of Alzheimer's dementia

    Get PDF
    Alzheimer’s disease is the most common neurodegenerative form of dementia that steadily worsens and eventually leads to death. Its set of symptoms include loss of cognitive function and memory decline. Structural and functional imaging methods such as CT, MRI, and PET scans play an essential role in the diagnosis process, being able to identify specific areas of cerebral damages. While the accuracy of these imaging techniques increases over time, the severity assessment of dementia remains challenging and susceptible to cognitive and perceptual errors due to intra-reader variability among physicians. Doctors have not agreed upon standardized measurement of cell loss used to specifically diagnose dementia among individuals. These limitations have led researchers to look for supportive diagnosis tools to enhance the spectrum of diseases characteristics and peculiarities. Here is presented a supportive auditory tool to aid in diagnosing patients with different levels of Alzheimer’s. This tool introduces an audible parameter mapped upon three different brain’s lobes. The motivating force behind this supportive auditory technique arise from the fact that AD is distinguished by a decrease of the metabolic activity (hypometabolism) in the parietal and temporal lobes of the brain. The diagnosis is then performed by comparing metabolic activity of the affected lobes to the metabolic activity of other lobes that are not generally affected by AD (i.e., sensorimotor cortex). Results from the diagnosis process compared with the ground truth show that physicians were able to categorize different levels of AD using the sonification generated in this study with higher accuracy than using a standard diagnosis procedure, based on the visualization alone

    Polyphonic sonification of electrocardiography signals for diagnosis of cardiac pathologies

    Get PDF
    Kather JN, Hermann T, Bukschat Y, Kramer T, Schad LR, Zöllner FG. Polyphonic sonification of electrocardiography signals for diagnosis of cardiac pathologies. Scientific Reports. 2017;7(1): 44549.Electrocardiography (ECG) data are multidimensional temporal data with ubiquitous applications in the clinic. Conventionally, these data are presented visually. It is presently unclear to what degree data sonification (auditory display), can enable the detection of clinically relevant cardiac pathologies in ECG data. In this study, we introduce a method for polyphonic sonification of ECG data, whereby different ECG channels are simultaneously represented by sound of different pitch. We retrospectively applied this method to 12 samples from a publicly available ECG database. We and colleagues from our professional environment then analyzed these data in a blinded. Based on these analyses, we found that the sonification technique can be intuitively understood after a short training session. On average, the correct classification rate for observers trained in cardiology was 78%, compared to 68% and 50% for observers not trained in cardiology or not trained in medicine at all, respectively. These values compare to an expected random guessing performance of 25%. Strikingly, 27% of all observers had a classification accuracy over 90%, indicating that sonification can be very successfully used by talented individuals. These findings can serve as a baseline for potential clinical applications of ECG sonification

    Skin cancer classifier based on convolution residual neural network

    Get PDF
    Accurate automatic classification of skin lesion images is a great challenge as the image features are very close in these images. Convolution neural networks (CNN) promise to provide a potential classifier for skin lesions. This work will present dermatologist-level classification of skin cancer by using residual network (ResNet-50) as a deep learning convolutional neural network (DLCNN) that maps images to class labels. It presents a classifier with a single CNN to automatically recognize benign and malignant skin images. The network inputs are only disease labels and image pixels. About 320 clinical images of the different diseases have been used to train CNN. The model performance has been tested with untrained images from the two labels. This model identifies the most common skin cancers and can be updated with a new unlimited number of images. The DLCNN trained by the ResNet-50 model showed good classification of the benign and malignant skin categories. The ResNet-50 as a DLCNN has verified a significant recognition rate of more than 97% on the testing images, which proves that the benign and malignant lesion skin images are properly classified

    Holograms to Focus Arbitrary Ultrasonic Fields through the Skull

    Full text link
    [EN] We report 3D-printed acoustic holographic lenses for the formation of ultrasonic fields of complex spatial distribution inside the skull. Using holographic lenses, we experimentally, numerically and theoretically produce acoustic beams whose spatial distribution matches target structures of the central nervous system. In particular, we produce three types of targets of increasing complexity. First, a set of points are selected at the center of both right and left human hippocampi. Experiments using a skull phantom and 3D printed acoustic holographic lenses show that the corresponding bi-focal lens simultaneously focuses acoustic energy at the target foci, with good agreement between theory and simulations. Second, an arbitrary curve is set as the target inside the skull phantom. Using time-reversal methods the holographic beam bends following the target path, in a similar way as self-bending beams do in free space. Finally, the right human hippocampus is selected as a target volume. The focus of the corresponding holographic lens overlaps with the target volume in excellent agreement between theory in free-media, and experiments and simulations including the skull phantom. The precise control of focused ultrasound into the central nervous system is mainly limited due to the strong phase aberrations produced by refraction and attenuation of the skull. Using the present method, the ultrasonic beam can be focused not only at a single point but overlapping one or various target structures simultaneously using low-cost 3D-printed acoustic holographic lens. The results open new paths to spread incoming biomedical ultrasound applications including blood-brain barrier opening and neuromodulation.This work is supported by the Spanish Ministry of Economy and Innovation (MINECO) through Project No. TEC2016-80976-R. N.J. and S.J. acknowledge financial support from Generalitat Valenciana through Grants No. APOSTD/2017/042, No. ACIF/2017/045, and No. GV/2018/11. F.C. acknowledges financial support from Agencia Valenciana de la Innovacio through Grant No. INNCON00/18/9 and European Regional Development Fund (Grant No. IDIFEDER/2018/022).Jiménez-Gambín, S.; Jimenez, N.; Benlloch Baviera, JM.; Camarena Femenia, F. (2019). Holograms to Focus Arbitrary Ultrasonic Fields through the Skull. Physical Review Applied. 12(1):014016-1-014016-14. https://doi.org/10.1103/PhysRevApplied.12.014016S014016-1014016-14121GABOR, D. (1948). A New Microscopic Principle. Nature, 161(4098), 777-778. doi:10.1038/161777a0Microscopy by reconstructed wave-fronts. (1949). Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 197(1051), 454-487. doi:10.1098/rspa.1949.0075Leith, E. N., & Upatnieks, J. (1962). Reconstructed Wavefronts and Communication Theory*. Journal of the Optical Society of America, 52(10), 1123. doi:10.1364/josa.52.001123Ni, X., Kildishev, A. V., & Shalaev, V. M. (2013). Metasurface holograms for visible light. Nature Communications, 4(1). doi:10.1038/ncomms3807Huang, L., Chen, X., Mühlenbernd, H., Zhang, H., Chen, S., Bai, B., … Zhang, S. (2013). Three-dimensional optical holography using a plasmonic metasurface. Nature Communications, 4(1). doi:10.1038/ncomms3808Ma, G., & Sheng, P. (2016). Acoustic metamaterials: From local resonances to broad horizons. Science Advances, 2(2), e1501595. doi:10.1126/sciadv.1501595Cummer, S. A., Christensen, J., & Alù, A. (2016). Controlling sound with acoustic metamaterials. Nature Reviews Materials, 1(3). doi:10.1038/natrevmats.2016.1Liu, Z. (2000). Locally Resonant Sonic Materials. Science, 289(5485), 1734-1736. doi:10.1126/science.289.5485.1734Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W., Sun, C., & Zhang, X. (2006). Ultrasonic metamaterials with negative modulus. Nature Materials, 5(6), 452-456. doi:10.1038/nmat1644Yang, M., Ma, G., Yang, Z., & Sheng, P. (2013). Coupled Membranes with Doubly Negative Mass Density and Bulk Modulus. Physical Review Letters, 110(13). doi:10.1103/physrevlett.110.134301Li, Y., Liang, B., Gu, Z., Zou, X., & Cheng, J. (2013). Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces. Scientific Reports, 3(1). doi:10.1038/srep02546Xie, Y., Wang, W., Chen, H., Konneker, A., Popa, B.-I., & Cummer, S. A. (2014). Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface. Nature Communications, 5(1). doi:10.1038/ncomms6553Jiménez, N., Cox, T. J., Romero-García, V., & Groby, J.-P. (2017). Metadiffusers: Deep-subwavelength sound diffusers. Scientific Reports, 7(1). doi:10.1038/s41598-017-05710-5Jiménez, N., Romero-García, V., Pagneux, V., & Groby, J.-P. (2017). Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems. Scientific Reports, 7(1). doi:10.1038/s41598-017-13706-4Qi, S., Li, Y., & Assouar, B. (2017). Acoustic Focusing and Energy Confinement Based on Multilateral Metasurfaces. Physical Review Applied, 7(5). doi:10.1103/physrevapplied.7.054006Bok, E., Park, J. J., Choi, H., Han, C. K., Wright, O. B., & Lee, S. H. (2018). Metasurface for Water-to-Air Sound Transmission. Physical Review Letters, 120(4). doi:10.1103/physrevlett.120.044302Li, Y., Jiang, X., Liang, B., Cheng, J., & Zhang, L. (2015). Metascreen-Based Acoustic Passive Phased Array. Physical Review Applied, 4(2). doi:10.1103/physrevapplied.4.024003Li, Y., & Assouar, M. B. (2015). Three-dimensional collimated self-accelerating beam through acoustic metascreen. Scientific Reports, 5(1). doi:10.1038/srep17612Kaina, N., Lemoult, F., Fink, M., & Lerosey, G. (2015). Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials. Nature, 525(7567), 77-81. doi:10.1038/nature14678Li, J., Fok, L., Yin, X., Bartal, G., & Zhang, X. (2009). Experimental demonstration of an acoustic magnifying hyperlens. Nature Materials, 8(12), 931-934. doi:10.1038/nmat2561Melde, K., Mark, A. G., Qiu, T., & Fischer, P. (2016). Holograms for acoustics. Nature, 537(7621), 518-522. doi:10.1038/nature19755Xie, Y., Shen, C., Wang, W., Li, J., Suo, D., Popa, B.-I., … Cummer, S. A. (2016). Acoustic Holographic Rendering with Two-dimensional Metamaterial-based Passive Phased Array. Scientific Reports, 6(1). doi:10.1038/srep35437Zhu, Y., Hu, J., Fan, X., Yang, J., Liang, B., Zhu, X., & Cheng, J. (2018). Fine manipulation of sound via lossy metamaterials with independent and arbitrary reflection amplitude and phase. Nature Communications, 9(1). doi:10.1038/s41467-018-04103-0Memoli, G., Caleap, M., Asakawa, M., Sahoo, D. R., Drinkwater, B. W., & Subramanian, S. (2017). Metamaterial bricks and quantization of meta-surfaces. Nature Communications, 8(1). doi:10.1038/ncomms14608Brown, M. D., Cox, B. T., & Treeby, B. E. (2017). Design of multi-frequency acoustic kinoforms. Applied Physics Letters, 111(24), 244101. doi:10.1063/1.5004040Hertzberg, Y., & Navon, G. (2011). Bypassing absorbing objects in focused ultrasound using computer generated holographic technique. Medical Physics, 38(12), 6407-6415. doi:10.1118/1.3651464Zhang, P., Li, T., Zhu, J., Zhu, X., Yang, S., Wang, Y., … Zhang, X. (2014). Generation of acoustic self-bending and bottle beams by phase engineering. Nature Communications, 5(1). doi:10.1038/ncomms5316Marzo, A., Seah, S. A., Drinkwater, B. W., Sahoo, D. R., Long, B., & Subramanian, S. (2015). Holographic acoustic elements for manipulation of levitated objects. Nature Communications, 6(1). doi:10.1038/ncomms9661Ter Haar, >Gail, & Coussios, C. (2007). High intensity focused ultrasound: Physical principles and devices. International Journal of Hyperthermia, 23(2), 89-104. doi:10.1080/02656730601186138Gélat, P., ter Haar, G., & Saffari, N. (2014). A comparison of methods for focusing the field of a HIFU array transducer through human ribs. Physics in Medicine and Biology, 59(12), 3139-3171. doi:10.1088/0031-9155/59/12/3139Fry, F. J., & Barger, J. E. (1978). Acoustical properties of the human skull. The Journal of the Acoustical Society of America, 63(5), 1576-1590. doi:10.1121/1.381852Thomas, J.-L., & Fink, M. A. (1996). Ultrasonic beam focusing through tissue inhomogeneities with a time reversal mirror: application to transskull therapy. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 43(6), 1122-1129. doi:10.1109/58.542055Hynynen, K., & Jolesz, F. A. (1998). Demonstration of Potential Noninvasive Ultrasound Brain Therapy Through an Intact Skull. Ultrasound in Medicine & Biology, 24(2), 275-283. doi:10.1016/s0301-5629(97)00269-xSun, J., & Hynynen, K. (1998). Focusing of therapeutic ultrasound through a human skull: A numerical study. The Journal of the Acoustical Society of America, 104(3), 1705-1715. doi:10.1121/1.424383Aubry, J.-F., Tanter, M., Pernot, M., Thomas, J.-L., & Fink, M. (2003). Experimental demonstration of noninvasive transskull adaptive focusing based on prior computed tomography scans. The Journal of the Acoustical Society of America, 113(1), 84-93. doi:10.1121/1.1529663Tanter, M., Thomas, J.-L., & Fink, M. (1998). Focusing and steering through absorbing and aberrating layers: Application to ultrasonic propagation through the skull. The Journal of the Acoustical Society of America, 103(5), 2403-2410. doi:10.1121/1.422759Hertzberg, Y., Volovick, A., Zur, Y., Medan, Y., Vitek, S., & Navon, G. (2010). Ultrasound focusing using magnetic resonance acoustic radiation force imaging: Application to ultrasound transcranial therapy. Medical Physics, 37(6Part1), 2934-2942. doi:10.1118/1.3395553Jolesz, F. A. (Ed.). (2014). Intraoperative Imaging and Image-Guided Therapy. doi:10.1007/978-1-4614-7657-3Shen, C., Xu, J., Fang, N. X., & Jing, Y. (2014). Anisotropic Complementary Acoustic Metamaterial for Canceling out Aberrating Layers. Physical Review X, 4(4). doi:10.1103/physrevx.4.041033Maimbourg, G., Houdouin, A., Deffieux, T., Tanter, M., & Aubry, J.-F. (2018). 3D-printed adaptive acoustic lens as a disruptive technology for transcranial ultrasound therapy using single-element transducers. Physics in Medicine & Biology, 63(2), 025026. doi:10.1088/1361-6560/aaa037Ferri, M., Bravo, J. M., Redondo, J., & Sánchez-Pérez, J. V. (2019). Enhanced Numerical Method for the Design of 3-D-Printed Holographic Acoustic Lenses for Aberration Correction of Single-Element Transcranial Focused Ultrasound. Ultrasound in Medicine & Biology, 45(3), 867-884. doi:10.1016/j.ultrasmedbio.2018.10.022Hynynen, K., McDannold, N., Vykhodtseva, N., & Jolesz, F. A. (2001). Noninvasive MR Imaging–guided Focal Opening of the Blood-Brain Barrier in Rabbits. Radiology, 220(3), 640-646. doi:10.1148/radiol.2202001804Tyler, W. J., Tufail, Y., Finsterwald, M., Tauchmann, M. L., Olson, E. J., & Majestic, C. (2008). Remote Excitation of Neuronal Circuits Using Low-Intensity, Low-Frequency Ultrasound. PLoS ONE, 3(10), e3511. doi:10.1371/journal.pone.0003511Schneider, U., Pedroni, E., & Lomax, A. (1996). The calibration of CT Hounsfield units for radiotherapy treatment planning. Physics in Medicine and Biology, 41(1), 111-124. doi:10.1088/0031-9155/41/1/009Mast, T. D. (2000). Empirical relationships between acoustic parameters in human soft tissues. Acoustics Research Letters Online, 1(2), 37-42. doi:10.1121/1.1336896Mazziotta, J. C., Toga, A. W., Evans, A., Fox, P., & Lancaster, J. (1995). A Probabilistic Atlas of the Human Brain: Theory and Rationale for Its Development. NeuroImage, 2(2), 89-101. doi:10.1006/nimg.1995.1012Yushkevich, P. A., Piven, J., Hazlett, H. C., Smith, R. G., Ho, S., Gee, J. C., & Gerig, G. (2006). User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. NeuroImage, 31(3), 1116-1128. doi:10.1016/j.neuroimage.2006.01.015Treeby, B. E., & Cox, B. T. (2010). Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian. The Journal of the Acoustical Society of America, 127(5), 2741-2748. doi:10.1121/1.3377056Treeby, B. E., Jaros, J., Rendell, A. P., & Cox, B. T. (2012). Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method. The Journal of the Acoustical Society of America, 131(6), 4324-4336. doi:10.1121/1.4712021Jiménez, N., Camarena, F., Redondo, J., Sánchez-Morcillo, V., Hou, Y., & Konofagou, E. E. (2016). Time-Domain Simulation of Ultrasound Propagation in a Tissue-Like Medium Based on the Resolution of the Nonlinear Acoustic Constitutive Relations. Acta Acustica united with Acustica, 102(5), 876-892. doi:10.3813/aaa.919002Jiménez, N., Romero-García, V., Pagneux, V., & Groby, J.-P. (2017). Quasiperfect absorption by subwavelength acoustic panels in transmission using accumulation of resonances due to slow sound. Physical Review B, 95(1). doi:10.1103/physrevb.95.014205Tsang, P. W. M., & Poon, T.-C. (2013). Novel method for converting digital Fresnel hologram to phase-only hologram based on bidirectional error diffusion. Optics Express, 21(20), 23680. doi:10.1364/oe.21.023680Lirette, R., & Mobley, J. (2017). Focal zone characteristics of stepped Fresnel and axicon acoustic lenses. doi:10.1121/2.0000703Gatto, M., Memoli, G., Shaw, A., Sadhoo, N., Gelat, P., & Harris, R. A. (2012). Three-Dimensional Printing (3DP) of neonatal head phantom for ultrasound: Thermocouple embedding and simulation of bone. Medical Engineering & Physics, 34(7), 929-937. doi:10.1016/j.medengphy.2011.10.012Robertson, J., Martin, E., Cox, B., & Treeby, B. E. (2017). Sensitivity of simulated transcranial ultrasound fields to acoustic medium property maps. Physics in Medicine and Biology, 62(7), 2559-2580. doi:10.1088/1361-6560/aa5e98Hill, C. R., Bamber, J. C., & ter Haar, G. R. (Eds.). (2004). Physical Principles of Medical Ultrasonics. doi:10.1002/0470093978O’Neil, H. T. (1949). Theory of Focusing Radiators. The Journal of the Acoustical Society of America, 21(5), 516-526. doi:10.1121/1.1906542Chen, D.-C., Zhu, X.-F., Wei, Q., Wu, D.-J., & Liu, X.-J. (2018). Broadband acoustic focusing by Airy-like beams based on acoustic metasurfaces. Journal of Applied Physics, 123(4), 044503. doi:10.1063/1.501070
    • …
    corecore