19,643 research outputs found

    Transportation Management in a Distributed Logistic Consumption System Under Uncertainty Conditions

    Get PDF
    The problem of supply management in the supplier-to-consumer logistics transport system has been formed and solved. The novelty of the formulation of the problem consists in the integrated accounting of costs in the logistic system, which takes into account at the same time the cost of transporting products from suppliers to consumers, as well as the costs for each of the consumers to store the unsold product and losses due to possible shortages. The resulting optimization problem is no longer a standard linear programming problem. In addition, the work assumes that the solution of the problem should be sought taking into account the fact that the initial data of the problem are not deterministic. The analysis of traditional methods of describing the uncertainty of the source data. It is concluded that, given the rapidly changing conditions for the implementation of the delivery process in a distributed supplier-to-consumer system, it is advisable to move from a theoretical probability representation of the source data to their description in terms of fuzzy mathematics. At the same time, in particular, the fuzzy values of the demand for the delivered product for each consumer are determined by their membership functions.Distribution of supplies in the system is described by solving a mathematical programming problem with a nonlinear objective function and a set of linear constraints of the transport type. In forming the criterion, a technology is used to transform the membership functions of fuzzy parameters of the problem to its theoretical probabilistic counterparts – density distribution of demand values. The task is reduced to finding for each consumer the value of the ordered product, minimizing the average total cost of storing the unrealized product and losses from the deficit. The initial problem is reduced to solving a set of integral equations solved, in general, numerically. It is shown that in particular, important for practice, particular cases, this solution is achieved analytically.The paper states the insufficient adequacy of the traditionally used mathematical models for describing fuzzy parameters of the problem, in particular, the demand. Statistical processing of real data on demand shows that the parameters of the membership functions of the corresponding fuzzy numbers are themselves fuzzy numbers. Acceptable mathematical models of the corresponding fuzzy numbers are formulated in terms of bifuzzy mathematics. The relations describing the membership functions of the bifuzzy numbers are given. A formula is obtained for calculating the total losses to storage and from the deficit, taking into account the bifuzzy of demand. In this case, the initial task is reduced to finding the distribution of supplies, at which the maximum value of the total losses does not exceed the permissible value

    A STOCHASTIC SIMULATION-BASED HYBRID INTERVAL FUZZY PROGRAMMING APPROACH FOR OPTIMIZING THE TREATMENT OF RECOVERED OILY WATER

    Get PDF
    In this paper, a stochastic simulation-based hybrid interval fuzzy programming (SHIFP) approach is developed to aid the decision-making process by solving fuzzy linear optimization problems. Fuzzy set theory, probability theory, and interval analysis are integrated to take into account the effect of imprecise information, subjective judgment, and variable environmental conditions. A case study related to oily water treatment during offshore oil spill clean-up operations is conducted to demonstrate the applicability of the proposed approach. The results suggest that producing a random sequence of triangular fuzzy numbers in a given interval is equivalent to a normal distribution when using the centroid defuzzification method. It also shows that the defuzzified optimal solutions follow the normal distribution and range from 3,000-3,700 tons, given the budget constraint (CAD 110,000-150,000). The normality seems to be able to propagate throughout the optimization process, yet this interesting finding deserves more in-depth study and needs more rigorous mathematical proof to validate its applicability and feasibility. In addition, the optimal decision variables can be categorized into several groups with different probability such that decision makers can wisely allocate limited resources with higher confidence in a short period of time. This study is expected to advise the industries and authorities on how to distribute resources and maximize the treatment efficiency of oily water in a short period of time, particularly in the context of harsh environments

    A solving tool for fuzzy quadratic optimal control problems

    Get PDF
    In this paper we propose an iterative method to solve an optimal control problem, with fuzzy target and constraints. The algorithm is developed in such a way as to satisfy the target function and the constraints. The algorithm can be applied only if a method exists to solve a crisp parametric sub-problem obtained by the original one. This is the case for a quadratic-linear target function with linear constraints, for which some well established solvable methods exist for the crisp associated sub-problem. A numerical test confirmed the good convergence properties.fuzzy, mathematical programming

    Measuring efficiency of a hierarchical organization with fuzzy DEA method

    Get PDF
    The paper analyses how the data envelopment analysis (DEA) and fuzzy set theory can be used to measure and evaluate the efficiency of a hierarchical system with n decision making units and a coordinating unit. It is presented a model for determining the of activity levels of decision making units so as to achieve both fuzzy objectives of achieving global target levels of coordination unit on the inputs and outputs and individual target levels of decision making units, and then some methods to resolve fuzzy models are proposed.fuzzy DEA, policy making in multi-level organisations, efficiency analysis
    corecore