3 research outputs found

    Cooperatively extending the range of indoor localisation

    Get PDF
    Whilst access to location based information has been mostly possible in the outdoor arena through the use of GPS, the provision of accurate positioning estimations and broad coverage in the indoor environment has proven somewhat problematic to deliver. Considering more time is spent in the indoor environment, the requirement for a solution is obvious. The topography of an indoor location with its many walls, doors, pillars, ceilings and floors etc. muffling the signals to from mobile devices and their tracking devices, is one of the many barriers to implementation. Moreover the characteristically noisy behaviour of wireless devices such as Bluetooth headsets, cordless phones and microwaves can cause interference as they all operate in the same band as Wi-Fi devices. The limited range of tracking devices such as Wireless Access Points (AP), and the restrictions surrounding their positioning within a buildings' infrastructure further exacerbate this issue, these difficulties provide a fertile research area at present. The genesis for this research is the inability of an indoor location based system (LBS) to locate devices beyond the range of the fixed tracking devices. The hypothesis advocates a solution that extends the range of Indoor LBS using Mobile Devices at the extremities of Cells that have a priori knowledge of their location, and utilizing these devices to ascertain the location of devices beyond the range of the fixed tracking device. This results in a cooperative localisation technique where participating devices come together to aid in the determination of location of devices which otherwise would be out of scope
    corecore