3,379 research outputs found

    Technology for an intelligent, free-flying robot for crew and equipment retrieval in space

    Get PDF
    Crew rescue and equipment retrieval is a Space Station Freedom requirement. During Freedom's lifetime, there is a high probability that a number of objects will accidently become separated. Members of the crew, replacement units, and key tools are examples. Retrieval of these objects within a short time is essential. Systems engineering studies were conducted to identify system requirements and candidate approaches. One such approach, based on a voice-supervised, intelligent, free-flying robot was selected for further analysis. A ground-based technology demonstration, now in its second phase, was designed to provide an integrated robotic hardware and software testbed supporting design of a space-borne system. The ground system, known as the EVA Retriever, is examining the problem of autonomously planning and executing a target rendezvous, grapple, and return to base while avoiding stationary and moving obstacles. The current prototype is an anthropomorphic manipulator unit with dexterous arms and hands attached to a robot body and latched in a manned maneuvering unit. A precision air-bearing floor is used to simulate space. Sensor data include two vision systems and force/proximity/tactile sensors on the hands and arms. Planning for a shuttle file experiment is underway. A set of scenarios and strawman requirements were defined to support conceptual development. Initial design activities are expected to begin in late 1989 with the flight occurring in 1994. The flight hardware and software will be based on lessons learned from both the ground prototype and computer simulations

    Designing Trustworthy Autonomous Systems

    Get PDF
    The design of autonomous systems is challenging and ensuring their trustworthiness can have different meanings, such as i) ensuring consistency and completeness of the requirements by a correct elicitation and formalization process; ii) ensuring that requirements are correctly mapped to system implementations so that any system behaviors never violate its requirements; iii) maximizing the reuse of available components and subsystems in order to cope with the design complexity; and iv) ensuring correct coordination of the system with its environment.Several techniques have been proposed over the years to cope with specific problems. However, a holistic design framework that, leveraging on existing tools and methodologies, practically helps the analysis and design of autonomous systems is still missing. This thesis explores the problem of building trustworthy autonomous systems from different angles. We have analyzed how current approaches of formal verification can provide assurances: 1) to the requirement corpora itself by formalizing requirements with assume/guarantee contracts to detect incompleteness and conflicts; 2) to the reward function used to then train the system so that the requirements do not get misinterpreted; 3) to the execution of the system by run-time monitoring and enforcing certain invariants; 4) to the coordination of the system with other external entities in a system of system scenario and 5) to system behaviors by automatically synthesize a policy which is correct

    Unified devs-based platform for modelling and simulation of hybrid control systems

    Get PDF
    Recent robotic research has led to different architectural approaches that support enactment of automatically synthesized discrete event controllers from user specifications over low-level continuous variable controllers. Simulation of these hybrid control approaches to robotics can be a useful validation tool for robot users and architecture designers, but presents the key challenge of working with discrete and continuous representations of the robot, its environment and its mission plans. In this work we address this challenge showcasing a unified DEVS-based hybrid simulation platform. We model and simulate the hybrid robotic software architecture of a fixed-wing UAV, including the full stack of controllers involved: discrete, hybrid and continuous. We validate the approach experimentally on a typical UAV mapping mission and show that with our unified approach we are able to achieve simulation speed-ups up to one order of magnitude above our previous Software In The Loop simulation setup

    Autonomous homing and docking tasks for an underwater vehicle

    No full text
    This paper briefly introduces a strategy for autonomous homing and docking tasks using an autonomous underwater vehicle. The control and guidance based path following for those tasks are described in this work. A standard sliding mode for controller design is briefly given. The method provides robust motion control efforts for an underwater vehicle’s decoupled system whilst minimising chattering effects. In a guidance system, the vector field based on a conventional artificial potential field method gives a desired trajectory with a use of existing information from sensors in the network. A well structured Line-of-Sight method is used for an AUV to follow the path. It provides guidance for an AUV to follow the predefined trajectory to a required position with the final desired orientation at the dock. Integration of a control and guidance system provides a complete system for this application. Simulation studies are illustrated in the paper

    Space Station Freedom automation and robotics: An assessment of the potential for increased productivity

    Get PDF
    This report presents the results of a study performed in support of the Space Station Freedom Advanced Development Program, under the sponsorship of the Space Station Engineering (Code MT), Office of Space Flight. The study consisted of the collection, compilation, and analysis of lessons learned, crew time requirements, and other factors influencing the application of advanced automation and robotics, with emphasis on potential improvements in productivity. The lessons learned data collected were based primarily on Skylab, Spacelab, and other Space Shuttle experiences, consisting principally of interviews with current and former crew members and other NASA personnel with relevant experience. The objectives of this report are to present a summary of this data and its analysis, and to present conclusions regarding promising areas for the application of advanced automation and robotics technology to the Space Station Freedom and the potential benefits in terms of increased productivity. In this study, primary emphasis was placed on advanced automation technology because of its fairly extensive utilization within private industry including the aerospace sector. In contrast, other than the Remote Manipulator System (RMS), there has been relatively limited experience with advanced robotics technology applicable to the Space Station. This report should be used as a guide and is not intended to be used as a substitute for official Astronaut Office crew positions on specific issues
    • …
    corecore