3,744 research outputs found

    Software Architecture Description and UML

    Get PDF

    Investigating Advances in the Acquisition of Secure Systems Based on Open Architecture, Open Source Software, and Software Product Lines

    Get PDF
    Naval Postgraduate School Acquisition Research Progra

    A Reasoning Framework for Dependability in Software Architectures

    Get PDF
    The degree to which a software system possesses specified levels of software quality attributes, such as performance and modifiability, often have more influence on the success and failure of those systems than the functional requirements. One method of improving the level of a software quality that a product possesses is to reason about the structure of the software architecture in terms of how well the structure supports the quality. This is accomplished by reasoning through software quality attribute scenarios while designing the software architecture of the system. As society relies more heavily on software systems, the dependability of those systems becomes critical. In this study, a framework for reasoning about the dependability of a software system is presented. Dependability is a multi-faceted software quality attribute that encompasses reliability, availability, confidentiality, integrity, maintainability and safety. This makes dependability more complex to reason about than other quality attributes. The goal of this reasoning framework is to help software architects build dependable software systems by using quantitative and qualitative techniques to reason about dependability in software architectures

    Model-Driven Development of Aspect-Oriented Software Architectures

    Full text link
    The work presented in this thesis of master is an approach that takes advantage of the Model-Driven Development approach for developing aspect-oriented software architectures. A complete MDD support for the PRISMA approach is defined by providing code generation, verification and reusability properties.Pérez Benedí, J. (2007). Model-Driven Development of Aspect-Oriented Software Architectures. http://hdl.handle.net/10251/12451Archivo delegad

    Software Security Metrics for Malware Resilience

    Get PDF
    We examine the level of resistance offered by a software product against malicious software (malware) attacks. Analysis is performed on the software architecture. This is available as a result of the software design process and can hence be used at an early stage in development. A model of a generic computer system is developed, based on the internationally recognized Common Criteria for Information Technology Security Evaluation. It is formally specified in the Z modeling language. Malicious software attacks and security mechanisms are captured by the model. A repository of generic attack methods is given and the concept of resistance classes introduced to distinguish different levels of protection. We assess how certain architectural properties and changes in system architecture affect the possible resistance classes of a product. This thesis has four main contributions: A generic model of an operating system from a security perspective, a repository of typical attack methods, a set of resistance classes, and an identification of software architecture metrics pertaining to ordered security levels

    Domain architecture a design framework for system development and integration

    Get PDF
    The ever growing complexity of software systems has revealed many short-comings in existing software engineering practices and has raised interest in architecture-driven software development. A system\u27s architecture provides a model of the system that suppresses implementation detail, allowing the architects to concentrate on the analysis and decisions that are most critical to structuring the system to satisfy its requirements. Recently, interests of researchers and practi-tioners have shifted from individual system architectures to architectures for classes of software systems which provide more general, reusable solutions to the issues of overall system organization, interoperability, and allocation of services to system components. These generic architectures, such as product line architectures and domain architectures, promote reuse and interoperability, and create a basis for cost effective construction of high-quality systems. Our focus in this dissertation is on domain architectures as a means of development and integration of large-scale, domain-specific business software systems. Business imperatives, including flexibility, productivity, quality, and ability to adapt to changes, have fostered demands for flexible, coherent and enterprise--wide integrated business systems. The components of such systems, developed separately or purchased off the shelf, need to cohesively form an overall compu-tational environment for the business. The inevitable complexity of such integrated solutions and the highly-demanding process of their construction, management, and evolution support require new software engineering methodologies and tools. Domain architectures, prescribing the organization of software systems in a business domain, hold a promise to serve as a foundation on which such integrated business systems can be effectively constructed. To meet the above expectations, software architectures must be properly defined, represented, and applied, which requires suitable methodologies as well as process and tool support. Despite research efforts, however, state-of-the-art methods and tools for architecture-based system development do not yet meet the practical needs of system developers. The primary focus of this dissertation is on developing methods and tools to support domain architecture engineering and on leveraging architectures to achieve improved system development and integration in presence of increased complexity. In particular, the thesis explores issues related to the following three aspects of software technology: system complexity and software architectures as tools to alleviate complexity; domain architectures as frameworks for construction of large scale, flexible, enterprise-wide software systems; and architectural models and representation techniques as a basis for good” design. The thesis presents an archi-tectural taxonomy to help categorize and better understand architectural efforts. Furthermore, it clarifies the purpose of domain architectures and characterizes them in detail. To support the definition and application of domain architectures we have developed a method for domain architecture engineering and representation: GARM-ASPECT. GARM, the Generic Architecture Reference Model, underlying the method, is a system of modeling abstractions, relations and recommendations for building representations of reference software architectures. The model\u27s focus on reference and domain architectures determines its main distinguishing features: multiple views of architectural elements, a separate rule system to express constraints on architecture element types, and annotations such as “libraries” of patterns and “logs” of guidelines. ASPECT is an architecture description language based on GARM. It provides a normalized vocabulary for representing the skeleton of an architecture, its structural view, and establishes a framework for capturing archi-tectural constraints. It also allows extensions of the structural view with auxiliary information, such as behavior or quality specifications. In this respect, ASPECT provides facilities for establishing relationships among different specifications and gluing them together within an overall architectural description. This design allows flexibility and adaptability of the methodology to the specifics of a domain or a family of systems. ASPECT supports the representation of reference architectures as well as individual system architectures. The practical applicability of this method has been tested through a case study in an industrial setting. The approach to architecture engineering and representation, presented in this dissertation, is pragmatic and oriented towards software practitioners. GARM-ASPECT, as well as the taxonomy of architectures are of use to architects, system planners and system engineers. Beyond these practical contributions, this thesis also creates a more solid basis for expbring the applicability of architectural abstractions, the practicality of representation approaches, and the changes required to the devel-opment process in order to achieve the benefits from an architecture-driven software technology
    corecore