5,095 research outputs found

    The AXIOM software layers

    Get PDF
    AXIOM project aims at developing a heterogeneous computing board (SMP-FPGA).The Software Layers developed at the AXIOM project are explained.OmpSs provides an easy way to execute heterogeneous codes in multiple cores. People and objects will soon share the same digital network for information exchange in a world named as the age of the cyber-physical systems. The general expectation is that people and systems will interact in real-time. This poses pressure onto systems design to support increasing demands on computational power, while keeping a low power envelop. Additionally, modular scaling and easy programmability are also important to ensure these systems to become widespread. The whole set of expectations impose scientific and technological challenges that need to be properly addressed.The AXIOM project (Agile, eXtensible, fast I/O Module) will research new hardware/software architectures for cyber-physical systems to meet such expectations. The technical approach aims at solving fundamental problems to enable easy programmability of heterogeneous multi-core multi-board systems. AXIOM proposes the use of the task-based OmpSs programming model, leveraging low-level communication interfaces provided by the hardware. Modular scalability will be possible thanks to a fast interconnect embedded into each module. To this aim, an innovative ARM and FPGA-based board will be designed, with enhanced capabilities for interfacing with the physical world. Its effectiveness will be demonstrated with key scenarios such as Smart Video-Surveillance and Smart Living/Home (domotics).Peer ReviewedPostprint (author's final draft

    Application Acceleration on FPGAs with OmpSs@FPGA

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.OmpSs@FPGA is the flavor of OmpSs that allows offloading application functionality to FPGAs. Similarly to OpenMP, it is based on compiler directives. While the OpenMP specification also includes support for heterogeneous execution, we use OmpSs and OmpSs@FPGA as prototype implementation to develop new ideas for OpenMP. OmpSs@FPGA implements the tasking model with runtime support to automatically exploit all SMP and FPGA resources available in the execution platform. In this paper, we present the OmpSs@FPGA ecosystem, based on the Mercurium compiler and the Nanos++ runtime system. We show how the applications are transformed to run on the SMP cores and the FPGA. The application kernels defined as tasks to be accelerated, using the OmpSs directives are: 1) transformed by the compiler into kernels connected with the proper synchronization and communication ports, 2) extracted to intermediate files, 3) compiled through the FPGA vendor HLS tool, and 4) used to configure the FPGA. Our Nanos++ runtime system schedules the application tasks on the platform, being able to use the SMP cores and the FPGA accelerators at the same time. We present the evaluation of the OmpSs@FPGA environment with the Matrix Multiplication, Cholesky and N-Body benchmarks, showing the internal details of the execution, and the performance obtained on a Zynq Ultrascale+ MPSoC (up to 128x). The source code uses OmpSs@FPGA annotations and different Vivado HLS optimization directives are applied for acceleration.This work is partially supported by the European Union H2020 program through the EuroEXA project (grant 754337), and HiPEAC (GA 687698), by the Spanish Government through Programa Severo Ochoa (SEV-2015- 0493), by the Spanish Ministry of Science and Technology (TIN2015-65316-P) and the Departament d’InnovaciĂł Universitats i Empresa de la Generalitat de Catalunya, under project MPEXPAR: Models de ProgramaciĂł i Entorns d’ExecuciĂł Paral·lels (2014-SGR-1051).Peer ReviewedPostprint (author's final draft

    Efficient Neural Network Implementations on Parallel Embedded Platforms Applied to Real-Time Torque-Vectoring Optimization Using Predictions for Multi-Motor Electric Vehicles

    Get PDF
    The combination of machine learning and heterogeneous embedded platforms enables new potential for developing sophisticated control concepts which are applicable to the field of vehicle dynamics and ADAS. This interdisciplinary work provides enabler solutions -ultimately implementing fast predictions using neural networks (NNs) on field programmable gate arrays (FPGAs) and graphical processing units (GPUs)- while applying them to a challenging application: Torque Vectoring on a multi-electric-motor vehicle for enhanced vehicle dynamics. The foundation motivating this work is provided by discussing multiple domains of the technological context as well as the constraints related to the automotive field, which contrast with the attractiveness of exploiting the capabilities of new embedded platforms to apply advanced control algorithms for complex control problems. In this particular case we target enhanced vehicle dynamics on a multi-motor electric vehicle benefiting from the greater degrees of freedom and controllability offered by such powertrains. Considering the constraints of the application and the implications of the selected multivariable optimization challenge, we propose a NN to provide batch predictions for real-time optimization. This leads to the major contribution of this work: efficient NN implementations on two intrinsically parallel embedded platforms, a GPU and a FPGA, following an analysis of theoretical and practical implications of their different operating paradigms, in order to efficiently harness their computing potential while gaining insight into their peculiarities. The achieved results exceed the expectations and additionally provide a representative illustration of the strengths and weaknesses of each kind of platform. Consequently, having shown the applicability of the proposed solutions, this work contributes valuable enablers also for further developments following similar fundamental principles.Some of the results presented in this work are related to activities within the 3Ccar project, which has received funding from ECSEL Joint Undertaking under grant agreement No. 662192. This Joint Undertaking received support from the European Union’s Horizon 2020 research and innovation programme and Germany, Austria, Czech Republic, Romania, Belgium, United Kingdom, France, Netherlands, Latvia, Finland, Spain, Italy, Lithuania. This work was also partly supported by the project ENABLES3, which received funding from ECSEL Joint Undertaking under grant agreement No. 692455-2

    APEnet+: a 3D toroidal network enabling Petaflops scale Lattice QCD simulations on commodity clusters

    Full text link
    Many scientific computations need multi-node parallelism for matching up both space (memory) and time (speed) ever-increasing requirements. The use of GPUs as accelerators introduces yet another level of complexity for the programmer and may potentially result in large overheads due to the complex memory hierarchy. Additionally, top-notch problems may easily employ more than a Petaflops of sustained computing power, requiring thousands of GPUs orchestrated with some parallel programming model. Here we describe APEnet+, the new generation of our interconnect, which scales up to tens of thousands of nodes with linear cost, thus improving the price/performance ratio on large clusters. The project target is the development of the Apelink+ host adapter featuring a low latency, high bandwidth direct network, state-of-the-art wire speeds on the links and a PCIe X8 gen2 host interface. It features hardware support for the RDMA programming model and experimental acceleration of GPU networking. A Linux kernel driver, a set of low-level RDMA APIs and an OpenMPI library driver are available, allowing for painless porting of standard applications. Finally, we give an insight of future work and intended developments

    FASTCUDA: Open Source FPGA Accelerator & Hardware-Software Codesign Toolset for CUDA Kernels

    Get PDF
    Using FPGAs as hardware accelerators that communicate with a central CPU is becoming a common practice in the embedded design world but there is no standard methodology and toolset to facilitate this path yet. On the other hand, languages such as CUDA and OpenCL provide standard development environments for Graphical Processing Unit (GPU) programming. FASTCUDA is a platform that provides the necessary software toolset, hardware architecture, and design methodology to efficiently adapt the CUDA approach into a new FPGA design flow. With FASTCUDA, the CUDA kernels of a CUDA-based application are partitioned into two groups with minimal user intervention: those that are compiled and executed in parallel software, and those that are synthesized and implemented in hardware. A modern low power FPGA can provide the processing power (via numerous embedded micro-CPUs) and the logic capacity for both the software and hardware implementations of the CUDA kernels. This paper describes the system requirements and the architectural decisions behind the FASTCUDA approach
    • 

    corecore