26,908 research outputs found

    "Re-engineering Cyprus" : information technologies and transformation processes in the Republic of Cyprus

    Get PDF
    By most Western Europeans Cyprus is probably perceived as a tourist resort rather than a technologically highly developed country. Interested German visitors are informed by the travel brochure published by the Republic of Cyprus' tourist office that "in the villages old customs and traditions still exist" (Zypern. 9000 Jahre Geschichte und Kultur 1997, 11). Pictures of places of antiquity, churches, monasteries, fortresses, archaic villages and of people engaged in agricultural work and crafts convey the image of a traditional Mediterranean society. However, the Republic of Cyprus is a rapidly modernising country. It has developed recently "from a poor agrarian into a high-income service economy" (Christodoulou 1995, 11) and "radical transformation processes" are observed (cf. ibid., 18). The forthcoming accession to the European Union additionally accelerates the pace of these transformation processes. Due to its position on the extreme rim of Europe in the Eastern Mediterranean region at the crossroads of three continents, the island is perceived both as marginal (cf. Pace 1999) and as a link between Europe and the Asian and African continents (cf. Kasoulides 1999). Cyprus is conceptualised for the future as a centre and intersection: as regional hub of the modern capital market, as communications and trade centre in the Eastern Mediterranean, as "telecommunications hub for the Eastern Mediterranean and Middle East region", as "international services centre". The Republic of Cyprus has a highly developed telecommunications infrastructure, which is the basic prerequisite for the conversion into such a centre and is one of the most important factors for the economic competitiveness of Cyprus. The global nature of communication platforms today, especially the Internet, is regarded as the key to the integration of Cyprus into the world economy. By implementing information technologies and promoting necessary expertise, economic progress and modernisation of the country as well as its global competitiveness is assumed to be guaranteed. Investments in the information technology infrastructure are regarded as essential for the development of Cyprus, fostering the implementation of the information society. This aim and the necessary implementation measures feature increasingly on the agendas of scientific and economic conferences and symposia in Cyprus

    Cyber security education is as essential as “The Three R’s”

    Get PDF
    Smartphones have diffused rapidly across South African society and constitute the most dominant information and communication technologies in everyday use. That being so, it is important to ensure that all South Africans know how to secure their smart devices. This requires a high level of security awareness and knowledge. As yet, there is no formal curriculum addressing cyber security in South African schools. Indeed, it seems to be left to Universities to teach cyber security principles, and they currently only do this when students take computing-related courses. The outcome of this approach is that only a very small percentage of South Africans, i.e. those who take computing courses at University, are made aware of cyber security risks and know how to take precautions. Moreover, because this group is overwhelmingly male, this educational strategy disproportionately leaves young female South Africans vulnerable to cyber attacks. We thus contend that cyber security ought to be taught as children learn the essential “3 Rs” – delivering requisite skills at University level does not adequately prepare young South Africans for a world where cyber security is an essential skill. Starting to provide awareness and knowledge at primary school, and embedding it across the curriculum would, in addition to ensuring that people have the skills when they need them, also remove the current gender imbalance in cyber security awareness

    A Review of the Open Educational Resources (OER) Movement: Achievements, Challenges, and New Opportunities

    Get PDF
    Examines the state of the foundation's efforts to improve educational opportunities worldwide through universal access to and use of high-quality academic content

    Heuristic Evaluation for Serious Immersive Games and M-instruction

    Get PDF
    © Springer International Publishing Switzerland 2016. Two fast growing areas for technology-enhanced learning are serious games and mobile instruction (M-instruction or M-Learning). Serious games are ones that are meant to be more than just entertainment. They have a serious use to educate or promote other types of activity. Immersive Games frequently involve many players interacting in a shared rich and complex-perhaps web-based-mixed reality world, where their circumstances will be multi and varied. Their reality may be augmented and often self-composed, as in a user-defined avatar in a virtual world. M-instruction and M-Learning is learning on the move; much of modern computer use is via smart devices, pads, and laptops. People use these devices all over the place and thus it is a natural extension to want to use these devices where they are to learn. This presents a problem if we wish to evaluate the effectiveness of the pedagogic media they are using. We have no way of knowing their situation, circumstance, education background and motivation, or potentially of the customisation of the final software they are using. Getting to the end user itself may also be problematic; these are learning environments that people will dip into at opportune moments. If access to the end user is hard because of location and user self-personalisation, then one solution is to look at the software before it goes out. Heuristic Evaluation allows us to get User Interface (UI) and User Experience (UX) experts to reflect on the software before it is deployed. The effective use of heuristic evaluation with pedagogical software [1] is extended here, with existing Heuristics Evaluation Methods that make the technique applicable to Serious Immersive Games and mobile instruction (M-instruction). We also consider how existing Heuristic Methods may be adopted. The result represents a new way of making this methodology applicable to this new developing area of learning technology

    Research and Education in Computational Science and Engineering

    Get PDF
    Over the past two decades the field of computational science and engineering (CSE) has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers of all persuasions with algorithmic inventions and software systems that transcend disciplines and scales. Carried on a wave of digital technology, CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society; and the CSE community is at the core of this transformation. However, a combination of disruptive developments---including the architectural complexity of extreme-scale computing, the data revolution that engulfs the planet, and the specialization required to follow the applications to new frontiers---is redefining the scope and reach of the CSE endeavor. This report describes the rapid expansion of CSE and the challenges to sustaining its bold advances. The report also presents strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie

    Accelerating the adoption of Industry 4.0 supporting technologies in manufacturing engineering courses

    Full text link
    [EN] Universities are one of the fundamental actors to guarantee the dissemination of knowledge and the development of competences related to the Industry of the Future (IoF) or Industry 4.0. Computer Aided (CAX) and Product Lifecycle Management (PLM) technologies are key part in the IoF. With this aim, it was launch a project focused on Manufacturing and partially funded by La Fondation Dassault Systèmes. This communication presents a review on CAX-PLM training, four initiatives already in place in universities participating in the project, the project scope, the approach to integrate with the industrial context, the working method to consider different competence profiles and the development framework.The authors express their gratitude to the other project colleagues and to La Fondation Dassault Systèmes for its funding support.Ríos, J.; Mas, F.; Marcos, M.; Vila, C.; Ugarte, D.; Chevrot, T. (2017). Accelerating the adoption of Industry 4.0 supporting technologies in manufacturing engineering courses. MATERIALS SCIENCE FORUM. 903:100-111. https://doi.org/10.4028/www.scientific.net/MSF.903.100S10011190

    Dynamics of High-Technology Firms in the Silicon Valley

    Get PDF
    The pace of technological innovation since World War II is dramatically accelerating following the commercial exploitation of the Internet. Since the mid 90’s fiber optics capacity (infrastructure for transmission of information including voice and data) has incremented over one hundred times thanks to a new technology, dense wave division multiplexing, and Internet traffic has increased over 1.000 times. The dramatic advances in information technology provide excellent examples of the critical relevance of the knowledge in the development of competitive advantages. The Silicon Valley (SV) that about fifty years ago was an agricultural region became the center of dramatic technological and organizational transformations. In fact, most of the present high-tech companies did not exist twenty years ago. Venture capital contribution to the local economy is quite important not only due to the magnitude of the financial investment (venture investment in SV during 2000 surpassed 25.000 millions of dollars) but also because the extent and quality of networks (management teams, senior employees, customers, providers, etc.) that bring to emerging companies. How do new technologies develop? What is the role of private and public investment in the financing of R&D? Which are the most dynamical agents and how do they interact? How are new companies created and how do they evolve? The discussion of these questions is the focus of the current work.Technological development, R&D, networks
    • …
    corecore