929 research outputs found

    Soft-Switching Techniques of Power Conversion System in Automotive Chargers

    Get PDF
    abstract: This thesis investigates different unidirectional topologies for the on-board charger in an electric vehicle and proposes soft-switching solutions in both the AC/DC and DC/DC stage of the converter with a power rating of 3.3 kW. With an overview on different charger topologies and their applicability with respect to the target specification a soft-switching technique to reduce the switching losses of a single phase boost-type PFC is proposed. This work is followed by a modification to the popular soft-switching topology, the dual active bridge (DAB) converter for application requiring unidirectional power flow. The topology named as the semi-dual active bridge (S-DAB) is obtained by replacing the fully active (four switches) bridge on the load side of a DAB by a semi-active (two switches and two diodes) bridge. The operating principles, waveforms in different intervals and expression for power transfer, which differ significantly from the basic DAB topology, are presented in detail. The zero-voltage switching (ZVS) characteristics and requirements are analyzed in detail and compared to those of DAB. A small-signal model of the new configuration is also derived. The analysis and performance of S-DAB are validated through extensive simulation and experimental results from a hardware prototype. Secondly, a low-loss auxiliary circuit for a power factor correction (PFC) circuit to achieve zero voltage transition is also proposed to improve the efficiency and operating frequency of the converter. The high dynamic energy generated in the switching node during turn-on is diverted by providing a parallel path through an auxiliary inductor and a transistor placed across the main inductor. The paper discusses the operating principles, design, and merits of the proposed scheme with hardware validation on a 3.3 kW/ 500 kHz PFC prototype. Modifications to the proposed zero voltage transition (ZVT) circuit is also investigated by implementing two topological variations. Firstly, an integrated magnetic structure is built combining the main inductor and auxiliary inductor in a single core reducing the total footprint of the circuit board. This improvement also reduces the size of the auxiliary capacitor required in the ZVT operation. The second modification redirects the ZVT energy from the input end to the DC link through additional half-bridge circuit and inductor. The half-bridge operating at constant 50% duty cycle simulates a switching leg of the following DC/DC stage of the converter. A hardware prototype of the above-mentioned PFC and DC/DC stage was developed and the operating principles were verified using the same.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Integrated DC-DC Charger Powertrain Converter Design for Electric Vehicles Using Wide Bandgap Semiconductors

    Get PDF
    Electric vehicles (EVs) adoption is growing due to environmental concerns, government subsidies, and cheaper battery packs. The main power electronics design challenges for next-generation EV power converters are power converter weight, volume, cost, and loss reduction. In conventional EVs, the traction boost and the onboard charger (OBC) have separate power modules, passives, and heat sinks. An integrated converter, combining and re-using some charging and powertrain components together, can reduce converter cost, volume, and weight. However, efficiency is often reduced to obtain the advantage of cost, volume, and weight reduction.An integrated converter topology is proposed to combine the functionality of the traction boost converter and isolated DC-DC converter of the OBC using a hybrid transformer where the same core is used for both converters. The reconfiguration between charging and traction operation is performed by the existing Battery Management System (BMS) contactors. The proposed converter is operated in both boost and dual active bridge (DAB) mode during traction operation. The loss mechanisms of the proposed integrated converter are modeled for different operating modes for design optimization. An aggregated drive cycle is considered for optimizing the integrated converter design parameters to reduce energy loss during traction operation, weight, and cost. By operating the integrated converter in DAB mode at light-load and boost mode at high-speed heavy-load, the traction efficiency is improved. An online mode transition algorithm is also developed to ensure stable output voltage and eliminate current oscillation during the mode transition. A high-power prototype is developed to verify the integrated converter functionality, validate the loss model, and demonstrate the online transition algorithm. An automated closed-loop controller is developed to implement the transition algorithm which can automatically make the transition between modes based on embedded efficiency mapping. The closed-loop control system also regulates the integrated converter output voltage to improve the overall traction efficiency of the integrated converter. Using the targeted design approach, the proposed integrated converter performs better in all three aspects including efficiency, weight, and cost than comparable discrete solutions for each converter

    Energy-efficient and Power-dense DC-DC Converters in Data Center and Electric Vehicle Applications Using Wide Bandgap Devices

    Get PDF
    The ever increasing demands in the energy conversion market propel power converters towards high efficiency and high power density. With fast development of data processing capability in the data center, the server will include more processors, memories, chipsets and hard drives than ever, which requires more efficient and compact power converters. Meanwhile, the energy-efficient and power-dense converters for the electric vehicle also result in longer driving range as well as more passengers and cargo capacities. DC-DC converters are indispensable power stages for both applications. In order to address the efficiency and density requirements of the DC-DC converters in these applications, several related research topics are discussed in this dissertation. For the DC-DC converter in the data center application, a LLC resonant converter based on the newly emerged GaN devices is developed to improve the efficiency over the traditional Si-based converter. The relationship between the critical device parameters and converter loss is established. A new perspective of extra winding loss due to the asymmetrical primary and secondary side current in LLC resonant converter is proposed. The extra winding loss is related to the critical device parameters as well. The GaN device benefits on device loss and transformer winding loss is analyzed. An improved LLC resonant converter design method considering the device loss and transformer winding loss is proposed. For the DC-DC converter in the electric vehicle application, an integrated DC-DC converter that combines the on-board charger DC-DC converter and drivetrain DC-DC converter is developed. The integrated DC-DC converter is considered to operate in different modes. The existing dual active bridge (DAB) DC-DC converter originally designed for the charger is proposed to operate in the drivetrain mode to improve the efficiency at the light load and high voltage step-up ratio conditions of the traditional drivetrain DC-DC converter. Design method and loss model are proposed for the integrated converter in the drivetrain mode. A scaled-down integrated DC-DC converter prototype is developed to verify the design and loss model

    Elektrikli araç yerleşik batarya şarj uygulamaları için yüksek verimli bir LLC rezonanslı DC-DC dönüştürücünün tasarım yaklaşımı

    Get PDF
    In this study, an optimal design procedure of inductor-inductor-capacitor (LLC) resonant converter for on-board electrical vehicle (EV) battery charge applications based on high efficiency is proposed. In the design procedure, lithium-ion battery cells are used due to their high power density, higher voltage and current rates compared to a lead-acid battery cells. Thus, LLC resonant converter should be regulated the output voltage in a wide voltage range with different load conditions according to typical charging profile of lithium-ion battery. For the design procedure, basic operation characteristics of LLC resonant converter is defined and operation regions are discussed in terms of high efficiency. The operation regions of LLC resonant converter are discussed to regulate wide output voltage range. In order to reach high efficiency optimal design, efficiency calculations based on Saber simulation are extracted for discussed operation regions. The best efficiency values are obtained for the operation of above-below resonance. Finally, soft switching operation of the LLC resonant converter is validated by Saber simulation for wide output voltage range and with changing load current

    Electric Vehicle Powertrain Integrated Charging

    Get PDF
    Batterieelektrische Fahrzeuge benötigen ein im Fahrzeug eingebautes Ladegerät, um die Energie aus dem Wechselstromnetz für die Gleichstrom- Batterie aufzubereiten. Integriertes Laden ist eine Methode der Integration von Ladefunktionalität in die Antriebsstrangkomponenten, welche während des Parkens außer Betrieb sind, mit dem Ziel, Kosten, Gewicht und Volumen des Ladegerät zu sparen. Das Laden ohne die Sicherheitsmaßnahme einer galvanischen Trennung im Ladegerät ist möglich mit zusätzlichen Maßnahmen gegen elektrischen Schlag, z.B. mit einer Fehlerstromerkennung und entsprechenden Trenneinrichtung. Im Stand der Technik wurden 33 integrierte Ladekonzepte gefunden und bezüglich Antriebsstrangnutzung, benötigte Komponenten, Drehmoment der elektrischen Maschine und Wirkungsgrad verglichen. Im Rahmen dieser Arbeit wird ein neues galvanisch getrenntes integriertes Ladekonzept beschrieben, mit dem Ziel, die Effizienz zu verbessern und gleichzeitig auftretendes Drehmoment in der Maschine zu vermeiden. Der Antriebsstrang wird als DC/DC-Wandler mit der elektrischen Maschine als Transformator im Stillstand genutzt. Berechnungen zeigen eine maximale Effizienz von 88%. Ansätze zur Verbesserung des Wirkungsgrads und zur Integration des Energieflusses im Bordnetz werden in dieser Arbeit vorgeschlagen und diskutiert. Allerdings muss der Rotorkäfig geöffnet werden, um ein Drehmoment während des Laden zu vermeiden. Dies stellt einen ähnlichen Aufwand dar wie die Darstellung eines separaten Ladegeräts. Somit ist dieses Konzept aus heutiger Sicht wegen niedriger Effizienz und hoher Kosten gegenüber einem separaten Ladegerät nicht konkurrenzfähig. Zwei Ladekonzepte ohne galvanische Trennung, die eine sechsphasige elektrische Maschine als in Serie geschaltete Hoch- und Tiefsetzsteller nutzen, werden im Rahmen der Arbeit vorgestellt und bezüglich der benötigten Komponenten, der Effizienz und des Drehmoments des Maschine ausgearbeitet. Die Antriebsstrangverluste werden für die Ladebedingungen mit Gleichströmen analysiert, basierend auf neuen Materialcharakterisierungen für die angewendete Belastung. Es wurden Wirkungsgrade bis zu 93% demonstriert und auch in theoretischen Berechnungen mit einer maximalen Abweichung von ±1% zum experimentellen Befund bestätigt. Zum Schutz gegen elektrischen Schlag bei nicht isolierten Ladekonzepten werden drei Konzepte für eine Fehlerstrommessung präsentiert und anhand von Messergebnissen analysiert. Siliziumkarbid-Inverter-Technologien zeigen in Kombination mit diesen Ladekonzepten Wirkungsgrade, die vergleichbar zu herkömmlichen separaten Ladegeräten sind, und weisen dabei deutlich geringere Kosten auf

    Analysis and Design of 3-Phase Unfolding Based AC-DC Battery Chargers

    Get PDF
    This thesis presents the analysis and design of high-efficiency battery chargers for heavy duty EV applications. The rise in popularity of the electric vehicles (EVs) due to their increased efficiency over conventional internal combustion engines, has driven the need for more battery charging infrastructure. Furthermore, heavy duty vehicles are also being converted to electric to fill needs such as public transportation via bus fleets as well as cargo delivery via semi-trucks. Such heavy duty vehicles require more energy than personal transportation vehicles and thus require larger battery packs. To charge heavy duty battery packs in the same amount of time as the typical EV, higher power chargers are required. Energy is distributed through the grid network, and a battery charger is converts the grid power into a regulated output for battery charging. The novel battery charging designs investigated in this thesis are classified differently than traditional designs because they have fewer switching stages to convert the power. The unique approach taken allows these designs to have higher efficiency overall than a traditional battery charger design. The new converter designs are refereed to as the three-level (3L) asymmetrical full bridge (3LAFB)and 3L asymmetrical dual active bridge (3LADAB). The operation of each converter is briefly discussed to help develop context for the hardware and controller designs. The controller design for the 3LAFB topology is developed to explain the control objectives of the 3-port dc-dc converter. Hardware results prototype designs are presented to validate proposed chargers and controller designs. A high power extreme fast charger (XFC) structure is proposed using multiple lower power modules. The high-efficiency design of a single module is presented and hardware results are given

    Three-Phase Unfolding Based Soft DC-Link Converter Topologies for AC to DC Applications

    Get PDF
    Battery electric vehicles (BEVs) and plugin hybrid electric vehicles (PHEVs) are more efficient than internal combustion-based vehicles. Adaption of EVs will help reduce the carbon emissions produced by the transportation sector. The charging infrastructure has to grow at a rapid pace to encourage EV adaption. Installing higher capacity fast chargers will help alleviate the range anxiety of battery electric vehicle customers. More public charging stations are required for the full adaption of EVs. Utility power is distributed as ‘alternating current.’ A battery requires ‘direct current’ (DC) source to charge it. Hence a power converter that converts AC source to DC source is required to charge an electric vehicle battery. Public transportation is another sector that is adapting electric vehicles at a fast pace. These vehicles require more power to operate and hence have huge battery packs. These vehicles require ultra-high-power charger to keep the charging time reasonable. A 60 Hz stepdown transformer is required at the facility to use the power. The cost and time to install this heavy transformer will inhibit the setting up a charging station. Power converters than can connect to medium voltage directly will eliminate the need for the step-down transformer saving space and cost. Commercially available state-of-the-art fast charging converters are adapted from general purpose commercial and industrial application rectifiers. The efficiencies of these converters tend to be lower (around 94%) due to the two-stage power conversion architecture. All the power that flows from the AC utility grid to charge the battery will be processed and filtered through two power conversion stages. Due to the anticipated increase in demand, there is a renewed interest in developing power converter topologies specific to battery charging applications. The objective here is to develop cheaper and compact power converters for battery charging. This dissertation proposes an innovative quasi-single stage power converter topologies for battery charging applications and direct medium voltage connected converters. The proposed topology fundamentally can achieve higher efficiency and power density than the conventional two-stage based converters. Only one stage requires filtering and incurs power conversion losses. Control burden is usually higher for single stage topologies. Innovative control approaches are presented to simplify the control complexity

    An Optimized Dual Active Bridge Converter for EV On-board Charger

    Get PDF
    corecore