941 research outputs found

    A Comprehensive Review of DC-DC Converters for EV Applications

    Get PDF
    DC-DC converters in Electric vehicles (EVs) have the role of interfacing power sources to the DC-link and the DC-link to the required voltage levels for usage of different systems in EVs like DC drive, electric traction, entertainment, safety and etc. Improvement of gain and performance in these converters has a huge impact on the overall performance and future of EVs. So, different configurations have been suggested by many researches. In this paper, bidirectional DC-DC converters (BDCs) are divided into four categories as isolated-soft, isolated-hard, non-isolated-soft and non-isolated-hard depending on the isolation and type of switching. Moreover, the control strategies, comparative factors, selection for a specific application and recent trends are reviewed completely. As a matter of fact, over than 200 papers have been categorized and considered to help the researchers who work on BDCs for EV application

    A comprehensive review on Bidirectional traction converter for Electric vehicles

    Get PDF
    In this fast-changing environmental condition, the effect of fossil fuel in vehicle is a significant concern. Many sustainable sources are being studied to replace the exhausting fossil fuel in most of the countries. This paper surveys the types of electric vehicle’s energy sources and current scenario of the on-road electric vehicle and its technical challenges. It summarizes the number of state-of-the-art research progresses in bidirectional dc-dc converters and its control strategies reported in last two decades. The performance of the various topologies of bidirectional dc-dc converters is also tabulated along with their references. Hence, this work will present a clear view on the development of state-of-the-art topologies in bidirectional dc-dc converters. This review paper will be a guide for the researchers for selecting suitable bidirectional traction dc-dc converters for electric vehicle and it gives the clear picture of this research field

    A Quasi-Resonant Bidirectional Converter with Soft-Switching Operation for Energy Storage Applications

    Get PDF
    The increased penetration of renewable energy power systems to produce clean and sustainable energy has led to the increased usage of various types of energy storage devices, such as high power density battery technologies, flywheel energy storage and super-capacitors. Energy storage devices are essential in any renewable generation systems to ensure providing uninterruptible and reliable power. Typically, a power electronic converter is required to serve as the intermediary between the common grid in a renewable energy system and the energy storage device. To be specific, the power converter must be able to facilitate bidirectional power flow between the grid and the energy storage device. Since the voltage level of the energy storage device is often much lower than the grid voltage level, the bidirectional converter must ensure that the voltage level can be stepped up or down efficiently as per the system requirements depending on the direction of the power flow. In this thesis, a unique quasi-resonant bidirectional converter topology is proposed for energy storage application. The proposed circuit only requires two switches to achieve bidirectional power flow. Hence, compared to the conventional dual-active bridge (DAB) based bidirectional converter topologies that require 8 switches, the total number of active switching devices required the proposed topology is greatly reduced. In addition, both switches in the proposed topology are able to achieve zero voltage switching (ZVS) turn-on and zero current switching (ZCS) turn-off to minimize the switching power losses without using additional auxiliary circuits. The operating principles and design equations of the proposed circuit will be discussed in details in this thesis. An extended version of the proposed topology that employs a modular design structure for high power application is also presented and discussed. Simulation results and experimental works on a proof-of-concept hardware prototype are given to highlight the performance of the proposed bidirectional converter

    A common ground switched-quasi-Z-source bidirectional DC-DC converter with wide-voltage-gain range for EVs with hybrid energy sources

    Get PDF
    A common ground switched-quasi-Z-source bidirectional DC-DC converter is proposed for electric vehicles (EVs) with hybrid energy sources. The proposed converter is based on the traditional two-level quasi-Z-source bidirectional DC-DC converter, changing the position of the main power switch. It has the advantages of a wide voltage gain range, a lower voltage stress across the power switches, and an absolute common ground. The operating principle, the voltage and current stresses on the power switches, the comparisons with the other converters, the small signal analysis and the controller design are presented in this paper. Finally, a 300W prototype with Uhigh=240V and Ulow=40~120V is developed, and the experimental results validate the performance and the feasibility of the proposed converter

    Performance enhancement of DC/DC converters for solar powered EV

    Get PDF
    The paper initially presents the essential drive arrangement required for electric vehicle. It requests high power bidirectional stream ability, with wide info voltage range, and yield voltage of vitality stockpiling gadgets, for example, super capacitors or batteries shift with the adjustment in stack. At that point the tenacity and outline of previously mentioned converter is proposed in this paper. The converter which relates a half extension topology, has high power stream ability and least gadget focuses on that can appropriately interface a super capacitor with the drive prepare of a crossover electric vehicle. Besides, by contrasting the fundamental qualities and applications with some ordinary bidirectional DC/DC converter, the proposed converter has low gadget rating and can be controlled by obligation cycle and stage move. Finally, the most essential attributes of this converter is that it utilizes the transformer spillage inductance as the essential vitality exchange component and control parameters, Simulation waveforms in light of MATLAB recreation are given to exhibit the integrity of this novel topology, and this converter is additionally reasonable for high power application, specifically to control the charge-release of super capacitors or batteries that can be utilized as a part of cross breed solar based electric vehicle

    Design and Application of Hybrid Multilevel Inverter for Voltage Boost

    Get PDF
    Today many efforts are made to research and use new energy sources because the potential for an energy crisis is increasing. Multilevel converters have gained much attention in the area of energy distribution and control due to its advantages in high power applications with low harmonics. They not only achieve high power ratings, but also enable the use of renewable energy sources. The general function of the multilevel converter is to synthesize a desired high voltage from several levels of dc voltages that can be batteries, fuel cells, etc. This dissertation presents a new hybrid multilevel inverter for voltage boost. The inverter consists of a standard 3-leg inverter (one leg for each phase) and H-bridge in series with each inverter leg. It can use only a single DC power source to supply a standard 3-leg inverter along with three full H-bridges supplied by capacitors or batteries. The proposed inverter could be applied in hybrid electric vehicles (HEVs) and fuel cell based hybrid electric vehicles (FCVs). It is of voltage boosting capability and eliminates the magnetics. This feature makes it suitable for the motor running from low to high power mode. In addition to hybrid electric vehicle applications, this paper also presents an application where the hybrid multilevel inverter acts as a renewable energy utility interface. In this dissertation, the structure, operation principle, and modulation control schemes of the proposed hybrid multilevel inverter are introduced. Simulation models and results are described and analyzed. An experimental 5 kW prototype inverter is built and tested

    Bidirectional DC-DC Converter for Supercapacitor as DC-bus Stabilization Element

    Get PDF
    The demand for renewable energy from wind and solar is increasing. These energy sources are intermittent and unpredictable to a degree and require a stable but fast responding DCgrid. This is achieved by extending the requirements of the DC-grid to its stabilization element and introducing high power density energy storage. The supercapacitor is investigated in this regard to be utilized as a stabilization element. Its fast electric response makes the supercapacitor an excellent energy storage device that works well with other energy storage devices like batteries and fuel cells but also standalone. An isolated bidirectional DC-DC converter is necessary to control the supercapacitor’s power flow and utilize its advantages fully. Firstly, an isolated bidirectional DC-DC converter is simulated and integrated with a supercapacitor in Matlab®/Simulink® to meet a specific system requirement. The DC-DC converter is presented with the dual active bridge topology and single-phase-shift control strategy. Based on the results, it is investigated if the supercapacitor is a good stabilization element for a DC-microgrid. Secondly, a supercapacitor system with integrated cell management, current and voltage sensing, over-voltage protection, and compact design is developed. The design is flexible, where one module can be connected in series or parallel to fit a custom design. In this thesis, six modules are necessitated to meet the system requirement. It is desirable to first test a prototype of one module before assembling the entire energy storage. The supercapacitor prototype is tested in the lab with a DC-load, and its transient response is compared with a simulated supercapacitor. A conference paper on the topic of supercapacitor and lithium-ion batteries is submitted for IEEE ICECCME2021. This paper presents our results that visualize the difference in transient response between the simulated and physical energy storage devices.Masteroppgave i energiENERGI399MAMN-ENER

    Simulation and stability of multi-port DC-DC converter

    Get PDF
    In this paper, the simulation and stability of multi-port DC-DC converter will be presented. Traditional DC-DC converter topologies interface two power terminals: a source and a load. The construction of diverse and flexible power management and distribution systems with such topologies is governed by a tight compromise between converter count, efficiency, and control complexity. The DC-DC converter may be considered as an advanced environment-friendly electronic conversion system, since it is a greenhouse emission eliminator. By utilizing the advancement of these renewable energy sources, we minimize the use of fossil fuel and thus contribute to a cleaner and pollution-free environment. Finally, comparison between the averaged model and the actual switching converter model is been studied

    Applications of Switch-Mode Rectifiers on Micro-grid Incorporating with EV and BESS

    Get PDF
    A switch-mode rectifier (SMR) can provide adjustable and well-regulated DC output voltage from the available AC source with good line drawn power quality. Depending on the input/output voltage transfer characteristics, the schematics, the operation quadrant, and control, SMRs possess many classifications and application. Typical potential application examples include grid powered motor drives, battery chargers, various power electronic facilities, micro-grids, and grid-connected battery energy storage system (BESS), etc. In micro-grids, the SMR can be employed as the AC generator-followed converter to yield better generating efficiency. The SMR operation of its grid-connected inverter let the grid-to-microgrid (G2M) operation be conductable in addition to the microgrid-to-grid (M2G) operation. As for the electric vehicle (EV), the bidirectional inverter can be arranged to perform G2V/V2G operations in idle case, wherein the SMR operation is made in G2V battery charging
    corecore