312 research outputs found

    Variable stiffness robotic hand for stable grasp and flexible handling

    Get PDF
    Robotic grasping is a challenging area in the field of robotics. When interacting with an object, the dynamic properties of the object will play an important role where a gripper (as a system), which has been shown to be stable as per appropriate stability criteria, can become unstable when coupled to an object. However, including a sufficiently compliant element within the actuation system of the robotic hand can increase the stability of the grasp in the presence of uncertainties. This paper deals with an innovative robotic variable stiffness hand design, VSH1, for industrial applications. The main objective of this work is to realise an affordable, as well as durable, adaptable, and compliant gripper for industrial environments with a larger interval of stiffness variability than similar existing systems. The driving system for the proposed hand consists of two servo motors and one linear spring arranged in a relatively simple fashion. Having just a single spring in the actuation system helps us to achieve a very small hysteresis band and represents a means by which to rapidly control the stiffness. We prove, both mathematically and experimentally, that the proposed model is characterised by a broad range of stiffness. To control the grasp, a first-order sliding mode controller (SMC) is designed and presented. The experimental results provided will show how, despite the relatively simple implementation of our first prototype, the hand performs extremely well in terms of both stiffness variability and force controllability

    Automatic Romaine Heart Harvester

    Get PDF
    The Romaine Robotics Senior Design Team developed a romaine lettuce heart trimming system in partnership with a Salinas farm to address a growing labor shortage in the agricultural industry that is resulting in crops rotting in the field before they could be harvested. An automated trimmer can alleviate the most time consuming step in the cut-trim-bag harvesting process, increasing the yields of robotic cutters or the speed of existing laborer teams. Leveraging the Partner Farm’s existing trimmer architecture, which consists of a laborer loading lettuce into sprungloaded grippers that are rotated through vision and cutting systems by an indexer, the team redesigned geometry to improve the loading, gripping, and ejection stages of the system. Physical testing, hand calculations, and FEA were performed to understand acceptable grip strengths and cup design, and several wooden mockups were built to explore a new actuating linkage design for the indexer. The team manufactured, assembled, and performed verification testing on a full-size metal motorized prototype that can be incorporated with the Partner Farm’s existing cutting and vision systems. The prototype met all of the established requirements, and the farm has implemented the redesign onto their trimmer. Future work would include designing and implementing vision and cutting systems for the team’s metal prototype

    A review of unilateral grippers for meat industry automation

    Get PDF
    With the expectation that meat consumption will grow by 12% over the next decade, coupled with the reported labour issues and viruses attacking human and animal health, there is a growing requirement for red meat slaughterhouse automation. Changes to current abattoir setups and processes are necessary to realise for sustainable, low-cost and scalable automation. However, to achieve such autonomous nirvana, simple, cost-efficient and robust tooling to support these systems are sought. This includes grippers used to hold, manipulate and transport workpieces, such as primal cuts of red meat, for example, with the simplest type being unilateral gripping systems. Scope and approach This paper critically reviews various unilateral gripping solutions available in cross-industry sectors or developed in research that could be used or adapted for the meat industry. Criteria for such tooling are simplicity, low-cost, durability and robustness, whilst being capable of gripping highly deformable objects of various structures and maintaining safety and hygiene standards. The focus is on air-driven grippers due to their ability to hold high payloads without causing visual and physical damage to the product. Key findings and conclusions Three pneumatic-based unilateral gripper principles, namely Coanda, Bernoulli and Vacuum, are critically reviewed for their feasibility in meat industry automation. In conclusion, the simple vacuum-based system offers the best solution of holding force and low damage thresholds. However, vacuum based design and adaption requires thought for meat surface and structure variance. This will inevitably lead to future experimental research and development work.A review of unilateral grippers for meat industry automationpublishedVersio

    Adaptive robust interaction control for low-cost robotic grasping

    Get PDF
    Robotic grasping is a challenging area in the field of robotics. When a gripper starts interacting with an object to perform a grasp, the mechanical properties of the object (stiffness and damping) will play an important role. A gripper which is stable in isolated conditions, can become unstable when coupled to an object. This can lead to the extreme condition where the gripper becomes unstable and generates excessive or insufficient grip force resulting in the grasped object either being crushed, or falling and breaking. In addition to the stability issue, grasp maintenance is one of the most important requirements of any grasp where it guarantees a secure grasp in the presence of any unknown disturbance. The term grasp maintenance refers to the reaction of the controller in the presence of external disturbances, trying to prevent any undesired slippage. To do so, the controller continuously adjusts the grip force. This is a challenging task as it requires an accurate model of the friction and object’s weight to estimate a sufficient grip force to stop the object from slipping while incurring minimum deformation. Unfortunately, in reality, there is no solution which is able to obtain the mechanical properties, frictional coefficient and weight of an object before establishing a mechanical interaction with it. External disturbance forces are also stochastic meaning they are impossible to predict. This thesis addresses both of the problems mentioned above by:Creating a novel variable stiffness gripper, capable of grasping unknown objects, mainly those found in agricultural or food manufacturing companies. In addition to the stabilisation effect of the introduced variable stiffness mechanism, a novel force control algorithm has been designed that passively controls the grip force in variable stiffness grippers. Due to the passive nature of the suggested controller, it completely eliminates the necessity for any force sensor. The combination of both the proposed variable stiffness gripper and the passivity based control provides a unique solution for the stable grasp and force control problem in tendon driven, angular grippers.Introducing a novel active multi input-multi output slip prevention algorithm. The algorithm developed provides a robust control solution to endow direct drive parallel jaw grippers with the capability to stop held objects from slipping while incurring minimum deformation; this can be done without any prior knowledge of the object’s friction and weight. The large number of experiments provided in this thesis demonstrate the robustness of the proposed controller when controlling parallel jaw grippers in order to quickly grip, lift and place a broad range of objects firmly without dropping or crushing them. This is particularly useful for teleoperation and nuclear decommissioning tasks where there is often no accurate information available about the objects to be handled. This can mean that pre-programming of the gripper is required for each different object and for high numbers of objects this is impractical and overly time-consuming. A robust controller, which is able to compensate for any uncertainties regarding the object model and any unknown external disturbances during grasping, is implemented. This work has advanced the state of the art in the following two main areas: Direct impedance modulation for stable grasping in tendon driven, angular grippers. Active MIMO slip prevention grasp control for direct drive parallel jaw grippers

    Cable compliance

    Get PDF
    The object of the investigation was to solve mechanical problems using cable-in-bending and cable-in-torsion. These problems included robotic contacts, targets, and controls using cable compliance. Studies continued in the use of cable compliance for the handicapped and the elderly. These included work stations, walkers, prosthetic knee joints, elbow joints, and wrist joints. More than half of these objects were met, and models were made and studies completed on most of the others. It was concluded that the many different and versatile solutions obtained only opened the door to many future challenges

    Safe and effective physical human-robot interaction: Approaches to variable compliance via soft joints and soft grippers

    Get PDF
    The work described in this thesis focusses on designing and building two novel physical devices in a robotic arm structure. The arm is intended for human-robot interaction in the domestic assistive robotics area. The first device aims at helping to ensure the safety of the human user. It acts as a mechanical fuse and disconnects the robotic arm link from its motor in case of collision. The device behaves in a rigid manner in normal operational times and in a compliant manner in case of potentially harmful collisions: it relies on a variable compliance. The second device is the end-effector of the robotic arm. It is a novel grasping device that aims at accommodating varying object shapes. This is achieved by the structure of the grasping device that is a soft structure with a compliant and a rigid phase. Its completely soft structure is able to mould to the object's shape in the compliant phase, while the rigid phase allows holding the object in a stable way.In this study, variable compliance is defined as a physical structure's change from a compliant to a rigid behaviour and vice versa. Due to its versatility and effectiveness, variable compliance has become the founding block of the design of the two devices in the robot arm physical structure. The novelty of the employment of variable compliance in this thesis resides in its use in both rigid and soft devices in order to help ensure both safety and adaptable grasping in one integrated physical structure, the robot arm.The safety device has been designed, modelled, produced, tested and physically embedded in the robot arm system. Compared to previous work in this field, the feature described in this thesis' work has a major advantage: its torque threshold can be actively regulated depending on the operational situation. The threshold torque is best described by an exponential curve in the mathematical model while it is best fit by a second order equation in the experimental data. The mismatch is more considerable for high values of threshold torque. However, both curves reflect that threshold torque magnitude increases by increasing the setting of the device. Testing of both the passive decoupling and active threshold torque regulation show that both are successfully obtained. The second novel feature of the robot arm is the soft grasping device inspired by hydrostatic skeletons. Its ability to passively adapts to complex shapes objects, reduces the complexity of the grasping action control. This gripper is low-cost, soft, cable-driven and it features no stiff sections. Its versatility, variable compliance and stable grasp are shown in several experiments. A model of the forward kinematics of the system is derived from observation of its bending behaviour.Variable compliance has shown to be a very relevant principle for the design and implementation of a robotic arm aimed at safely interacting with human users and that can reduce grasp control complexity by passively adapting to the object's shape

    Development of an expert system for supporting the selection of robot grippers

    Get PDF
    The aim of this thesis is to lay the basis for the development of an expert system for the selection of robot grippers. This work has started with a review of the literature of the grasping principles, of releasing strategies and of the main problems concerning the automatic assembly or, more in general, the handling. Later, we have studied a set of parameters constituting the input of the expert system, together with a set of rules aimed at choosing the appropriate gripper. The work ends with a series of tests, with a focus on the food industry, reporting the results and discussing the possibility of future developments
    • …
    corecore