1,188 research outputs found

    Recommending Items in Social Tagging Systems Using Tag and Time Information

    Full text link
    In this work we present a novel item recommendation approach that aims at improving Collaborative Filtering (CF) in social tagging systems using the information about tags and time. Our algorithm follows a two-step approach, where in the first step a potentially interesting candidate item-set is found using user-based CF and in the second step this candidate item-set is ranked using item-based CF. Within this ranking step we integrate the information of tag usage and time using the Base-Level Learning (BLL) equation coming from human memory theory that is used to determine the reuse-probability of words and tags using a power-law forgetting function. As the results of our extensive evaluation conducted on data-sets gathered from three social tagging systems (BibSonomy, CiteULike and MovieLens) show, the usage of tag-based and time information via the BLL equation also helps to improve the ranking and recommendation process of items and thus, can be used to realize an effective item recommender that outperforms two alternative algorithms which also exploit time and tag-based information.Comment: 6 pages, 2 tables, 9 figure

    Improving argumentation-based recommender systems through context-adaptable selection criteria

    Get PDF
    Recommender Systems based on argumentation represent an important proposal where the recommendation is supported by qualitative information. In these systems, the role of the comparison criterion used to decide between competing arguments is paramount and the possibility of using the most appropriate for a given domain becomes a central issue; therefore, an argumentative recommender system that offers an interchangeable argument comparison criterion provides a significant ability that can be exploited by the user. However, in most of current recommender systems, the argument comparison criterion is either fixed, or codified within the arguments. In this work we propose a formalization of context-adaptable selection criteria that enhances the argumentative reasoning mechanism. Thus, we do not propose of a new type of recommender system; instead we present a mechanism that expand the capabilities of existing argumentation-based recommender systems. More precisely, our proposal is to provide a way of specifying how to select and use the most appropriate argument comparison criterion effecting the selection on the user´s preferences, giving the possibility of programming, by the use of conditional expressions, which argument preference criterion has to be used in each particular situation.Fil: Teze, Juan Carlos Lionel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional de Entre Ríos; ArgentinaFil: Gottifredi, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; ArgentinaFil: García, Alejandro Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; ArgentinaFil: Simari, Guillermo Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentin

    Building Ethically Bounded AI

    Full text link
    The more AI agents are deployed in scenarios with possibly unexpected situations, the more they need to be flexible, adaptive, and creative in achieving the goal we have given them. Thus, a certain level of freedom to choose the best path to the goal is inherent in making AI robust and flexible enough. At the same time, however, the pervasive deployment of AI in our life, whether AI is autonomous or collaborating with humans, raises several ethical challenges. AI agents should be aware and follow appropriate ethical principles and should thus exhibit properties such as fairness or other virtues. These ethical principles should define the boundaries of AI's freedom and creativity. However, it is still a challenge to understand how to specify and reason with ethical boundaries in AI agents and how to combine them appropriately with subjective preferences and goal specifications. Some initial attempts employ either a data-driven example-based approach for both, or a symbolic rule-based approach for both. We envision a modular approach where any AI technique can be used for any of these essential ingredients in decision making or decision support systems, paired with a contextual approach to define their combination and relative weight. In a world where neither humans nor AI systems work in isolation, but are tightly interconnected, e.g., the Internet of Things, we also envision a compositional approach to building ethically bounded AI, where the ethical properties of each component can be fruitfully exploited to derive those of the overall system. In this paper we define and motivate the notion of ethically-bounded AI, we describe two concrete examples, and we outline some outstanding challenges.Comment: Published at AAAI Blue Sky Track, winner of Blue Sky Awar

    Bridging Systems: Open Problems for Countering Destructive Divisiveness across Ranking, Recommenders, and Governance

    Full text link
    Divisiveness appears to be increasing in much of the world, leading to concern about political violence and a decreasing capacity to collaboratively address large-scale societal challenges. In this working paper we aim to articulate an interdisciplinary research and practice area focused on what we call bridging systems: systems which increase mutual understanding and trust across divides, creating space for productive conflict, deliberation, or cooperation. We give examples of bridging systems across three domains: recommender systems on social media, collective response systems, and human-facilitated group deliberation. We argue that these examples can be more meaningfully understood as processes for attention-allocation (as opposed to "content distribution" or "amplification") and develop a corresponding framework to explore similarities - and opportunities for bridging - across these seemingly disparate domains. We focus particularly on the potential of bridging-based ranking to bring the benefits of offline bridging into spaces which are already governed by algorithms. Throughout, we suggest research directions that could improve our capacity to incorporate bridging into a world increasingly mediated by algorithms and artificial intelligence.Comment: 40 pages, 11 figures. See https://bridging.systems for more about this wor

    Ontological Matchmaking in Recommender Systems

    Full text link
    The electronic marketplace offers great potential for the recommendation of supplies. In the so called recommender systems, it is crucial to apply matchmaking strategies that faithfully satisfy the predicates specified in the demand, and take into account as much as possible the user preferences. We focus on real-life ontology-driven matchmaking scenarios and identify a number of challenges, being inspired by such scenarios. A key challenge is that of presenting the results to the users in an understandable and clear-cut fashion in order to facilitate the analysis of the results. Indeed, such scenarios evoke the opportunity to rank and group the results according to specific criteria. A further challenge consists of presenting the results to the user in an asynchronous fashion, i.e. the 'push' mode, along with the 'pull' mode, in which the user explicitly issues a query, and displays the results. Moreover, an important issue to consider in real-life cases is the possibility of submitting a query to multiple providers, and collecting the various results. We have designed and implemented an ontology-based matchmaking system that suitably addresses the above challenges. We have conducted a comprehensive experimental study, in order to investigate the usability of the system, the performance and the effectiveness of the matchmaking strategies with real ontological datasets.Comment: 28 pages, 8 figure
    corecore