27,699 research outputs found

    Getting Close Without Touching: Near-Gathering for Autonomous Mobile Robots

    Get PDF
    In this paper we study the Near-Gathering problem for a finite set of dimensionless, deterministic, asynchronous, anonymous, oblivious and autonomous mobile robots with limited visibility moving in the Euclidean plane in Look-Compute-Move (LCM) cycles. In this problem, the robots have to get close enough to each other, so that every robot can see all the others, without touching (i.e., colliding with) any other robot. The importance of solving the Near-Gathering problem is that it makes it possible to overcome the restriction of having robots with limited visibility. Hence it allows to exploit all the studies (the majority, actually) done on this topic in the unlimited visibility setting. Indeed, after the robots get close enough to each other, they are able to see all the robots in the system, a scenario that is similar to the one where the robots have unlimited visibility. We present the first (deterministic) algorithm for the Near-Gathering problem, to the best of our knowledge, which allows a set of autonomous mobile robots to nearly gather within finite time without ever colliding. Our algorithm assumes some reasonable conditions on the input configuration (the Near-Gathering problem is easily seen to be unsolvable in general). Further, all the robots are assumed to have a compass (hence they agree on the "North" direction), but they do not necessarily have the same handedness (hence they may disagree on the clockwise direction). We also show how the robots can detect termination, i.e., detect when the Near-Gathering problem has been solved. This is crucial when the robots have to perform a generic task after having nearly gathered. We show that termination detection can be obtained even if the total number of robots is unknown to the robots themselves (i.e., it is not a parameter of the algorithm), and robots have no way to explicitly communicate.Comment: 25 pages, 8 fiugre

    Meeting in a Polygon by Anonymous Oblivious Robots

    Full text link
    The Meeting problem for k2k\geq 2 searchers in a polygon PP (possibly with holes) consists in making the searchers move within PP, according to a distributed algorithm, in such a way that at least two of them eventually come to see each other, regardless of their initial positions. The polygon is initially unknown to the searchers, and its edges obstruct both movement and vision. Depending on the shape of PP, we minimize the number of searchers kk for which the Meeting problem is solvable. Specifically, if PP has a rotational symmetry of order σ\sigma (where σ=1\sigma=1 corresponds to no rotational symmetry), we prove that k=σ+1k=\sigma+1 searchers are sufficient, and the bound is tight. Furthermore, we give an improved algorithm that optimally solves the Meeting problem with k=2k=2 searchers in all polygons whose barycenter is not in a hole (which includes the polygons with no holes). Our algorithms can be implemented in a variety of standard models of mobile robots operating in Look-Compute-Move cycles. For instance, if the searchers have memory but are anonymous, asynchronous, and have no agreement on a coordinate system or a notion of clockwise direction, then our algorithms work even if the initial memory contents of the searchers are arbitrary and possibly misleading. Moreover, oblivious searchers can execute our algorithms as well, encoding information by carefully positioning themselves within the polygon. This code is computable with basic arithmetic operations, and each searcher can geometrically construct its own destination point at each cycle using only a compass. We stress that such memoryless searchers may be located anywhere in the polygon when the execution begins, and hence the information they initially encode is arbitrary. Our algorithms use a self-stabilizing map construction subroutine which is of independent interest.Comment: 37 pages, 9 figure

    A Certified Universal Gathering Algorithm for Oblivious Mobile Robots

    Full text link
    We present a new algorithm for the problem of universal gathering mobile oblivious robots (that is, starting from any initial configuration that is not bivalent, using any number of robots, the robots reach in a finite number of steps the same position, not known beforehand) without relying on a common chirality. We give very strong guaranties on the correctness of our algorithm by proving formally that it is correct, using the COQ proof assistant. To our knowledge, this is the first certified positive (and constructive) result in the context of oblivious mobile robots. It demonstrates both the effectiveness of the approach to obtain new algorithms that are truly generic, and its managability since the amount of developped code remains human readable
    corecore