446 research outputs found

    Accurate and reliable segmentation of the optic disc in digital fundus images

    Get PDF
    We describe a complete pipeline for the detection and accurate automatic segmentation of the optic disc in digital fundus images. This procedure provides separation of vascular information and accurate inpainting of vessel-removed images, symmetry-based optic disc localization, and fitting of incrementally complex contour models at increasing resolutions using information related to inpainted images and vessel masks. Validation experiments, performed on a large dataset of images of healthy and pathological eyes, annotated by experts and partially graded with a quality label, demonstrate the good performances of the proposed approach. The method is able to detect the optic disc and trace its contours better than the other systems presented in the literature and tested on the same data. The average error in the obtained contour masks is reasonably close to the interoperator errors and suitable for practical applications. The optic disc segmentation pipeline is currently integrated in a complete software suite for the semiautomatic quantification of retinal vessel properties from fundus camera images (VAMPIRE)

    A ribbon of twins for extracting vessel boundaries

    Get PDF
    This paper presents an efficient model for automatic detection and extraction of blood vessels in ocular fundus images. The model is formed using a combination of the concept of ribbon snakes and twin snakes. On each edge, the twin concept is introduced by using two snakes, one inside and one outside the boundary. The ribbon concept integrates the pair of twins on the two vessel edges into a single ribbon. The twins maintain the consistency of the vessel width, particularly on very blurred, thin and noisy vessels. The model exhibits excellent performance in extracting the boundaries of vessels, with improved robustness compared to alternative models in the presence of occlusion, poor contrast or noise. Results are presented which demonstrate the performance of the discussed edge extraction method, and show a significant improvement compared to classical snake formulations

    REVIEW - A reference data set for retinal vessel profiles

    Get PDF
    This paper describes REVIEW, a new retinal vessel reference dataset. This dataset includes 16 images with 193 vessel segments, demonstrating a variety of pathologies and vessel types. The vessel edges are marked by three observers using a special drawing tool. The paper also describes the algorithm used to process these segments to produce vessel profiles, against which vessel width measurement algorithms can be assessed. Recommendations are given for use of the dataset in performance assessment. REVIEW can be downloaded from http://ReviewDB.lincoln.ac.uk

    Medical Image Segmentation by Water Flow

    No full text
    We present a new image segmentation technique based on the paradigm of water flow and apply it to medical images. The force field analogy is used to implement the major water flow attributes like water pressure, surface tension and adhesion so that the model achieves topological adaptability and geometrical flexibility. A new snake-like force functional combining edge- and region-based forces is introduced to produce capability for both range and accuracy. The method has been assessed qualitatively and quantitatively, and shows decent detection performance as well as ability to handle noise

    Segmentation of Retinal Vasculature using Active Contour Models (Snakes)

    Get PDF
    Characteristic of retinal vasculature has been an important indicator for many diseases such as hypertension and diabetes. A digital image analysis system can assist medical experts to make accurate diagnosis in an efficient manner. This project presents the computer based approach to the automated segmentation of blood vessels in retinal images. The detection of the retinal vessel is achieved by performing image enhancement using CLAHE followed by Bottom-hat morphological transformation. Active contour model (snake) that based on level sets, techniques of curve evolution, and Mumford-Shah functional for segmentation is then used to segment out the detected retinal vessel and produce a complete retinal vasculature. A Graphic User Interface (GUI) has also been created to ease the user for the segmentation of the retinal vasculature. The algorithm is then tested with 20 test images from the DRIVE database. The results shows that the algorithm outperforms many other published methods and achieved an accuracy (ability to detect both vessel and non-vessel pixels) range of 0.92-0.94, a sensitivity (ability to detect vessel pixels) range of 0.91-0.95 and a specificity (ability to detect non-vessel pixels) range of0.78-0.85. I

    Image and Volume Segmentation by Water Flow

    No full text
    A general framework for image segmentation is presented in this paper, based on the paradigm of water flow. The major water flow attributes like water pressure, surface tension and capillary force are defined in the context of force field generation and make the model adaptable to topological and geometrical changes. A flow-stopping image functional combining edge- and region-based forces is introduced to produce capability for both range and accuracy. The method is assessed qualitatively and quantitatively on synthetic and natural images. It is shown that the new approach can segment objects with complex shapes or weak-contrasted boundaries, and has good immunity to noise. The operator is also extended to 3-D, and is successfully applied to medical volume segmentation

    Optic nerve head segmentation

    Get PDF
    Reliable and efficient optic disk localization and segmentation are important tasks in automated retinal screening. General-purpose edge detection algorithms often fail to segment the optic disk due to fuzzy boundaries, inconsistent image contrast or missing edge features. This paper presents an algorithm for the localization and segmentation of the optic nerve head boundary in low-resolution images (about 20 /spl mu//pixel). Optic disk localization is achieved using specialized template matching, and segmentation by a deformable contour model. The latter uses a global elliptical model and a local deformable model with variable edge-strength dependent stiffness. The algorithm is evaluated against a randomly selected database of 100 images from a diabetic screening programme. Ten images were classified as unusable; the others were of variable quality. The localization algorithm succeeded on all bar one usable image; the contour estimation algorithm was qualitatively assessed by an ophthalmologist as having Excellent-Fair performance in 83% of cases, and performs well even on blurred image
    corecore