55,545 research outputs found

    Lie groups in nonequilibrium thermodynamics: Geometric structure behind viscoplasticity

    Full text link
    Poisson brackets provide the mathematical structure required to identify the reversible contribution to dynamic phenomena in nonequilibrium thermodynamics. This mathematical structure is deeply linked to Lie groups and their Lie algebras. From the characterization of all the Lie groups associated with a given Lie algebra as quotients of a universal covering group, we obtain a natural classification of rheological models based on the concept of discrete reference states and, in particular, we find a clear-cut and deep distinction between viscoplasticity and viscoelasticity. The abstract ideas are illustrated by a naive toy model of crystal viscoplasticity, but similar kinetic models are also used for modeling the viscoplastic behavior of glasses. We discuss some implications for coarse graining and statistical mechanics.Comment: 11 pages, 1 figure, accepted for publication in J. Non-Newtonian Fluid Mech. Keywords: Elastic-viscoplastic materials, Nonequilibrium thermodynamics, GENERIC, Lie groups, Reference state

    Dendritic to globular morphology transition in ternary alloy solidification

    Full text link
    The evolution of solidification microstructures in ternary metallic alloys is investigated by adaptive finite element simulations of a general multicomponent phase-field model. A morphological transition from dendritic to globular growth is found by varying the alloy composition at a fixed undercooling. The dependence of the growth velocity and of the impurity segregation in the solid phase on the composition is analyzed and indicates a smooth type of transition between the dendritic and globular growth structures.Comment: 4 pages, 2 figure

    Fluid Simulations with Localized Boltzmann Upscaling by Direct Simulation Monte-Carlo

    Full text link
    In the present work, we present a novel numerical algorithm to couple the Direct Simulation Monte Carlo method (DSMC) for the solution of the Boltzmann equation with a finite volume like method for the solution of the Euler equations. Recently we presented in [14],[16],[17] different methodologies which permit to solve fluid dynamics problems with localized regions of departure from thermodynamical equilibrium. The methods rely on the introduction of buffer zones which realize a smooth transition between the kinetic and the fluid regions. In this paper we extend the idea of buffer zones and dynamic coupling to the case of the Monte Carlo methods. To facilitate the coupling and avoid the onset of spurious oscillations in the fluid regions which are consequences of the coupling with a stochastic numerical scheme, we use a new technique which permits to reduce the variance of the particle methods [11]. In addition, the use of this method permits to obtain estimations of the breakdowns of the fluid models less affected by fluctuations and consequently to reduce the kinetic regions and optimize the coupling. In the last part of the paper several numerical examples are presented to validate the method and measure its computational performances

    Pattern formation in a diffusion-ODE model with hysteresis

    Full text link
    Coupling diffusion process of signaling molecules with nonlinear interactions of intracellular processes and cellular growth/transformation leads to a system of reaction-diffusion equations coupled with ordinary differential equations (diffusion-ODE models), which differ from the usual reaction-diffusion systems. One of the mechanisms of pattern formation in such systems is based on the existence of multiple steady states and hysteresis in the ODE subsystem. Diffusion tries to average different states and is the cause of spatio-temporal patterns. In this paper we provide a systematic description of stationary solutions of such systems, having the form of transition or boundary layers. The solutions are discontinuous in the case of non-diffusing variables whose quasi-stationary dynamics exhibit hysteresis. The considered model is motivated by biological applications and elucidates a possible mechanism of formation of patterns with sharp transitions.Comment: 32 pages, 8 picture
    • …
    corecore