7,542 research outputs found

    Vorticity-transport and unstructured RANS investigation of rotor-fuselage interactions

    Get PDF
    The prediction capabilities of unstructured primitive-variable and vorticity-transport-based Navier-Stokes solvers have been compared for rotorcraft-fuselage interaction. Their accuracies have been assessed using the NASA Langley ROBIN series of experiments. Correlation of steady pressure on the isolated fuselage delineates the differences between the viscous and inviscid solvers. The influence of the individual blade passage, model supports, and viscous effects on the unsteady pressure loading has been studied. Smoke visualization from the ROBIN experiment has been used to determine the ability of the codes to predict the wake geometry. The two computational methods are observed to provide similar results within the context of their physical assumptions and simplifications in the test configuration

    Multi-touch 3D Exploratory Analysis of Ocean Flow Models

    Get PDF
    Modern ocean flow simulations are generating increasingly complex, multi-layer 3D ocean flow models. However, most researchers are still using traditional 2D visualizations to visualize these models one slice at a time. Properly designed 3D visualization tools can be highly effective for revealing the complex, dynamic flow patterns and structures present in these models. However, the transition from visualizing ocean flow patterns in 2D to 3D presents many challenges, including occlusion and depth ambiguity. Further complications arise from the interaction methods required to navigate, explore, and interact with these 3D datasets. We present a system that employs a combination of stereoscopic rendering, to best reveal and illustrate 3D structures and patterns, and multi-touch interaction, to allow for natural and efficient navigation and manipulation within the 3D environment. Exploratory visual analysis is facilitated through the use of a highly-interactive toolset which leverages a smart particle system. Multi-touch gestures allow users to quickly position dye emitting tools within the 3D model. Finally, we illustrate the potential applications of our system through examples of real world significance

    Interactive translucent volume rendering and procedural modeling

    Get PDF
    Journal ArticleDirect volume rendering is a commonly used technique in visualization applications. Many of these applications require sophisticated shading models to capture subtle lighting effects and characteristics of volume metric data and materials. Many common objects and natural phenomena exhibit visual quality that cannot be captured using simple lighting models or cannot be solved at interactive rates using more sophisticated methods. We present a simple yet effective interactive shading model which captures volumetric light attenuation effects to produce volumetric shadows and the subtle appearance of translucency. We also present a technique for volume displacement or perturbation that allows realistic interactive modeling of high frequency detail for real and synthetic volumetric data

    Evolving time surfaces and tracking mixing indicators for flow visualization

    Get PDF
    The complexity of large scale computational fluid dynamic simulations (CFD) demands powerful tools to investigate the numerical results. To analyze and understand these voluminous results, we need to visualize the 3D flow field. We chose to use a visualization technique called Time Surfaces. A time surface is a set of surfaces swept by an initial seed surface for a given number of timesteps. We use a front tracking approach where the points of an in initial surface are advanced in a Lagrangian fashion. To maintain a smooth time surface, our method requires surface refinement operations that either split triangle edges, adjust narrow triangles, or delete small triangles. In the conventional approach of edge splitting, we compute the length of an edge, and split that edge if it has exceeded a certain threshold length. In our new approach, we examine the angle between the two vectors at a given edge. We split the edge if the vectors are diverging from one another. This vector angle criterion enables us to refine an edge before advancing the surface front. Refining a surface prior to advancing it has the effect of minimizing the amount of interpolation error. In addition, unlike the edge length criterion which yields a triangular mesh with even vertex distribution throughout the surface, the vector angle criterion yields a triangular mesh that has fewer vertices where the vector field is flat and more vertices where the vector field is curved. Motivated by the evaluation and the analysis of flow field mixing quantities, this work explores two types of quantitative measurements. First, we look at Ottino\u27s mixing indicators which measure the degree of mixing of a fluid by quantifying the rate at which a sample fluid blob stretches in a flow field over a period of time. Using the geometry of the time surfaces we generated, we are able to easily evaluate otherwise complicated mixing quantities. Second, we compute the curvature and torsion of the velocity field itself. Visualizing the distribution and intensity of the curvature and torsion scalar fields enables us to identify regions of strong and low mixing. To better observe these scalar fields, we designed a multi-scale colormap that emphasizes small, medium, and large values, simultaneously. We test our time surface method and analyze fluid flow mixing quantities on two CFD datasets: a stirred tank simulation and a BP oil spill simulation

    Learning 3D Human Pose from Structure and Motion

    Full text link
    3D human pose estimation from a single image is a challenging problem, especially for in-the-wild settings due to the lack of 3D annotated data. We propose two anatomically inspired loss functions and use them with a weakly-supervised learning framework to jointly learn from large-scale in-the-wild 2D and indoor/synthetic 3D data. We also present a simple temporal network that exploits temporal and structural cues present in predicted pose sequences to temporally harmonize the pose estimations. We carefully analyze the proposed contributions through loss surface visualizations and sensitivity analysis to facilitate deeper understanding of their working mechanism. Our complete pipeline improves the state-of-the-art by 11.8% and 12% on Human3.6M and MPI-INF-3DHP, respectively, and runs at 30 FPS on a commodity graphics card.Comment: ECCV 2018. Project page: https://www.cse.iitb.ac.in/~rdabral/3DPose
    corecore