1,580 research outputs found

    Negotiation-Based Capacity Planning With A Learning Mechanism Using Adaptive Neurofuzzy Inference System

    Get PDF
    In decentralized manufacturing environment with multiple factories that are scattered geographically, the complexity of production systems increases, and capacity planning and allocation of resources have become a significant concern that affects system performances. This study focuses on the development of an integrated framework to allocate limited budget in a multiple-factory environment. We develop a negotiation framework with learning mechanism to allocate autonomously finite budget provided by a headquarter and to facilitate the use of limited manufacturing resources that are scattered over individual factories. The outcome of the experiments shows good prediction of the opponent offers during negotiation, so it enables the reduction of negotiation time

    Efficient performative actions for e-commerce agents

    Get PDF
    The foundational features of multi-agent systems are communication and interaction with other agents. To achieve these features, agents have to transfer messages in the predefined format and semantics. The communication among these agents takes place with the help of ACL (Agent Communication Language). ACL is a predefined language for communication among agents that has been standardised by the FIPA (Foundation for Intelligent Physical Agent). FIPA-ACL defines different performatives for communication among the agents. These performatives are generic, and it becomes computationally expensive to use them for a specific domain like e-commerce. These performatives do not define the exact meaning of communication for any specific domain like e-commerce. In the present research, we introduced new performatives specifically for e-commerce domain. Our designed performatives are based on FIPA-ACL so that they can still support communication within diverse agent platforms. The proposed performatives are helpful in modelling e-commerce negotiation protocol applications using the paradigm of multi-agent systems for efficient communication. For exact semantic interpretation of the proposed performatives, we also performed formal modelling of these performatives using BNF. The primary objective of our research was to provide the negotiation facility to agents, working in an e-commerce domain, in a succinct way to reduce the number of negotiation messages, time consumption and network overhead on the platform. We used an e-commerce based bidding case study among agents to demonstrate the efficiency of our approach. The results showed that there was a lot of reduction in total time required for the bidding process

    A Reinforcement Learning Quality of Service Negotiation Framework For IoT Middleware

    Get PDF
    The Internet of Things (IoT) ecosystem is characterised by heterogeneous devices dynamically interacting with each other to perform a specific task, often without human intervention. This interaction typically occurs in a service-oriented manner and is facilitated by an IoT middleware. The service provision paradigm enables the functionalities of IoT devices to be provided as IoT services to perform actuation tasks in critical-safety systems such as autonomous, connected vehicle system and industrial control systems. As IoT systems are increasingly deployed into an environment characterised by continuous changes and uncertainties, there have been growing concerns on how to resolve the Quality of Service (QoS) contentions between heterogeneous devices with conflicting preferences to guarantee the execution of mission-critical actuation tasks. With IoT devices with different QoS constraints as IoT service providers spontaneously interacts with IoT service consumers with varied QoS requirements, it becomes essential to find the best way to establish and manage the QoS agreement in the middleware as a compromise in the QoS could lead to negative consequences. This thesis presents a QoS negotiation framework, IoTQoSystem, for IoT service-oriented middleware. The QoS framework is underpinned by a negotiation process that is modelled as a Markov Decision Process (MDP). A model-based Reinforcement Learning negotiation strategy is proposed for generating an acceptable QoS solution in a dynamic, multilateral and multi-parameter scenarios. A microservice-oriented negotiation architecture is developed that combines negotiation, monitoring and forecasting to provide a self-managing mechanism for ensuring the successful execution of actuation tasks in an IoT environment. Using a case study, the developed QoS negotiation framework was evaluated using real-world data sets with different negotiation scenarios to illustrate its scalability, reliability and performance

    RLBOA: A modular reinforcement learning framework for autonomous negotiating agents

    Get PDF
    Negotiation is a complex problem, in which the variety of settings and opponents that may be encountered prohibits the use of a single predefined negotiation strategy. Hence the agent should be able to learn such a strategy autonomously. To this end we propose RLBOA, a modular framework that facilitates the creation of autonomous negotiation agents using reinforcement learning. The framework allows for the creation of agents that are capable of negotiating effectively in many different scenarios. To be able to cope with the large size of the state and action spaces and diversity of settings, we leverage the modular BOA-framework. This decouples the negotiation strategy into a Bidding strategy, an Opponent model and an Acceptance condition. Furthermore, we map the multidimensional contract space onto the utility axis which enables a compact and generic state and action description. We demonstrate the value of the RLBOA framework by implementing an agent that uses tabular Q-learning on the compressed state and action space to learn a bidding strategy.We show that the resulting agent is able to learn well-performing bidding strategies in a range of negotiation settings and is able to generalize across opponents and domains

    Innovation incentives and the design of value networks

    Get PDF
    Participation in value networks is vital for companies as competition has moved increasingly to the level of company networks. Consequently, the growing complexity of the globally networked business environment necessitates the use of supportive tools in the management of network relations. This Dissertation studies the value networks from two perspectives. First, as companies expect a return on their contributions to the network, the Dissertation constructs profit-sharing rules that serve as innovation incentives for the network partners. Second, the Dissertation builds models for the identification of network synergies in partner selection. The developments rest on game theory, transaction cost theory, and multi-criteria decision analysis. The results are normative in that the developed models give insight to decision-makers at three levels: (i) the company decision-maker wants to optimise the company's participation in various networks, (ii) the network decision-maker needs to incentivate the network partners to contribute to the network, and (iii) the policy-maker aims to construct socially optimal instruments for the innovation system. Overall, the use of jointly agreed profit-sharing rules and synergetic partnerships supports the attempts to reduce transaction costs, offering benefits to the firms who participate in value networks

    Coalition based approach for shop floor agility – a multiagent approach

    Get PDF
    Dissertation submitted for a PhD degree in Electrical Engineering, speciality of Robotics and Integrated Manufacturing from the Universidade Nova de Lisboa, Faculdade de Ciências e TecnologiaThis thesis addresses the problem of shop floor agility. In order to cope with the disturbances and uncertainties that characterise the current business scenarios faced by manufacturing companies, the capability of their shop floors needs to be improved quickly, such that these shop floors may be adapted, changed or become easily modifiable (shop floor reengineering). One of the critical elements in any shop floor reengineering process is the way the control/supervision architecture is changed or modified to accommodate for the new processes and equipment. This thesis, therefore, proposes an architecture to support the fast adaptation or changes in the control/supervision architecture. This architecture postulates that manufacturing systems are no more than compositions of modularised manufacturing components whose interactions when aggregated are governed by contractual mechanisms that favour configuration over reprogramming. A multiagent based reference architecture called Coalition Based Approach for Shop floor Agility – CoBASA, was created to support fast adaptation and changes of shop floor control architectures with minimal effort. The coalitions are composed of agentified manufacturing components (modules), whose relationships within the coalitions are governed by contracts that are configured whenever a coalition is established. Creating and changing a coalition do not involve programming effort because it only requires changes to the contract that regulates it
    • …
    corecore