2,301 research outputs found

    From Frequency to Meaning: Vector Space Models of Semantics

    Full text link
    Computers understand very little of the meaning of human language. This profoundly limits our ability to give instructions to computers, the ability of computers to explain their actions to us, and the ability of computers to analyse and process text. Vector space models (VSMs) of semantics are beginning to address these limits. This paper surveys the use of VSMs for semantic processing of text. We organize the literature on VSMs according to the structure of the matrix in a VSM. There are currently three broad classes of VSMs, based on term-document, word-context, and pair-pattern matrices, yielding three classes of applications. We survey a broad range of applications in these three categories and we take a detailed look at a specific open source project in each category. Our goal in this survey is to show the breadth of applications of VSMs for semantics, to provide a new perspective on VSMs for those who are already familiar with the area, and to provide pointers into the literature for those who are less familiar with the field

    Streaming the Web: Reasoning over dynamic data.

    Get PDF
    In the last few years a new research area, called stream reasoning, emerged to bridge the gap between reasoning and stream processing. While current reasoning approaches are designed to work on mainly static data, the Web is, on the other hand, extremely dynamic: information is frequently changed and updated, and new data is continuously generated from a huge number of sources, often at high rate. In other words, fresh information is constantly made available in the form of streams of new data and updates. Despite some promising investigations in the area, stream reasoning is still in its infancy, both from the perspective of models and theories development, and from the perspective of systems and tools design and implementation. The aim of this paper is threefold: (i) we identify the requirements coming from different application scenarios, and we isolate the problems they pose; (ii) we survey existing approaches and proposals in the area of stream reasoning, highlighting their strengths and limitations; (iii) we draw a research agenda to guide the future research and development of stream reasoning. In doing so, we also analyze related research fields to extract algorithms, models, techniques, and solutions that could be useful in the area of stream reasoning. © 2014 Elsevier B.V. All rights reserved

    Natural language processing

    Get PDF
    Beginning with the basic issues of NLP, this chapter aims to chart the major research activities in this area since the last ARIST Chapter in 1996 (Haas, 1996), including: (i) natural language text processing systems - text summarization, information extraction, information retrieval, etc., including domain-specific applications; (ii) natural language interfaces; (iii) NLP in the context of www and digital libraries ; and (iv) evaluation of NLP systems

    COSPO/CENDI Industry Day Conference

    Get PDF
    The conference's objective was to provide a forum where government information managers and industry information technology experts could have an open exchange and discuss their respective needs and compare them to the available, or soon to be available, solutions. Technical summaries and points of contact are provided for the following sessions: secure products, protocols, and encryption; information providers; electronic document management and publishing; information indexing, discovery, and retrieval (IIDR); automated language translators; IIDR - natural language capabilities; IIDR - advanced technologies; IIDR - distributed heterogeneous and large database support; and communications - speed, bandwidth, and wireless

    Improving Collaborative Learning Using Pervasive Embedded System-Based Multi-Agent Information and Retrieval Framework in Educational Systems

    Get PDF
    E-learning is a form of Technology SupportedEducation where the medium of instruction is throughDigital Technologies, particularly Computer Technology.An instance is the use of search engines like Google andYahoo, which aid Collaborative Learning. However, thewidespread provision of distributed, semi-structuredinformation resources such as the Web has obviouslybrought a lot of benefits; but it also has a number ofdifficulties. These difficulties include people gettingoverwhelmed by the sheer amount of information available,making it hard for them to filter out the junk andirrelevancies and focus on what is important, and also toactively search for the right information. Also, people easilyget bored or confused while browsing the Web because ofthe hypertext nature of the web, while making it easy to linkrelated documents together, it can also be disorienting. Toalleviate these problems, the Web Information Food ChainModel was introduced. How effective has this been with thedynamic nature of computing technologies? Pervasivecomputing devices enable people to gain immediate accessto information and services anywhere, anytime, withouthaving to carry around heavy and impractical computingdevices. Thus, the bulky PCs become less attractive andbeing slowly eroded with the development of a newgeneration of smart devices like wireless PDAs, smartphones, etc. These embedded devices are characterized bybeing unobtrusively embedded; completely connected;intuitively intelligent; effortlessly portable and mobile; andconstantly on and available. This paper presents the use ofembedded systems and Intelligent Agent-Based WebInformation Food Chain Model in Multi-Agent Informationand Retrieval Framework (IIFCEMAF), to realizing fullpotentials of the internet, for users’ improved system ofcollaborative e-learning in education

    A survey on the development status and application prospects of knowledge graph in smart grids

    Full text link
    With the advent of the electric power big data era, semantic interoperability and interconnection of power data have received extensive attention. Knowledge graph technology is a new method describing the complex relationships between concepts and entities in the objective world, which is widely concerned because of its robust knowledge inference ability. Especially with the proliferation of measurement devices and exponential growth of electric power data empowers, electric power knowledge graph provides new opportunities to solve the contradictions between the massive power resources and the continuously increasing demands for intelligent applications. In an attempt to fulfil the potential of knowledge graph and deal with the various challenges faced, as well as to obtain insights to achieve business applications of smart grids, this work first presents a holistic study of knowledge-driven intelligent application integration. Specifically, a detailed overview of electric power knowledge mining is provided. Then, the overview of the knowledge graph in smart grids is introduced. Moreover, the architecture of the big knowledge graph platform for smart grids and critical technologies are described. Furthermore, this paper comprehensively elaborates on the application prospects leveraged by knowledge graph oriented to smart grids, power consumer service, decision-making in dispatching, and operation and maintenance of power equipment. Finally, issues and challenges are summarised.Comment: IET Generation, Transmission & Distributio

    Linked Vocabulary Recommendation Tools for Internet of Things: A Survey

    Get PDF
    The Semantic Web emerged with the vision of eased integration of heterogeneous, distributed data on the Web. The approach fundamentally relies on the linkage between and reuse of previously published vocabularies to facilitate semantic interoperability. In recent years, the Semantic Web has been perceived as a potential enabling technology to overcome interoperability issues in the Internet of Things (IoT), especially for service discovery and composition. Despite the importance of making vocabulary terms discoverable and selecting most suitable ones in forthcoming IoT applications, no state-of-the-art survey of tools achieving such recommendation tasks exists to date. This survey covers this gap, by specifying an extensive evaluation framework and assessing linked vocabulary recommendation tools. Furthermore, we discuss challenges and opportunities of vocabulary recommendation and related tools in the context of emerging IoT ecosystems. Overall, 40 recommendation tools for linked vocabularies were evaluated, both, empirically and experimentally. Some of the key ndings include that (i) many tools neglect to thoroughly address both, the curation of a vocabulary collection and e ective selection mechanisms; (ii) modern information retrieval techniques are underrepresented; and (iii) the reviewed tools that emerged from Semantic Web use cases are not yet su ciently extended to t today’s IoT projects

    Enhanced Web Search Engines with Query-Concept Bipartite Graphs

    Get PDF
    With rapid growth of information on the Web, Web search engines have gained great momentum for exploiting valuable Web resources. Although keywords-based Web search engines provide relevant search results in response to users’ queries, future enhancement is still needed. Three important issues include (1) search results can be diverse because ambiguous keywords in queries can be interpreted to different meanings; (2) indentifying keywords in long queries is difficult for search engines; and (3) generating query-specific Web page summaries is desirable for Web search results’ previews. Based on clickthrough data, this thesis proposes a query-concept bipartite graph for representing queries’ relations, and applies the queries’ relations to applications such as (1) personalized query suggestions, (2) long queries Web searches and (3) query-specific Web page summarization. Experimental results show that query-concept bipartite graphs are useful for performance improvement for the three applications
    • …
    corecore