71 research outputs found

    Roadmap on measurement technologies for next generation structural health monitoring systems

    Get PDF
    Structural health monitoring (SHM) is the automation of the condition assessment process of an engineered system. When applied to geometrically large components or structures, such as those found in civil and aerospace infrastructure and systems, a critical challenge is in designing the sensing solution that could yield actionable information. This is a difficult task to conduct cost-effectively, because of the large surfaces under consideration and the localized nature of typical defects and damages. There have been significant research efforts in empowering conventional measurement technologies for applications to SHM in order to improve performance of the condition assessment process. Yet, the field implementation of these SHM solutions is still in its infancy, attributable to various economic and technical challenges. The objective of this Roadmap publication is to discuss modern measurement technologies that were developed for SHM purposes, along with their associated challenges and opportunities, and to provide a path to research and development efforts that could yield impactful field applications. The Roadmap is organized into four sections: distributed embedded sensing systems, distributed surface sensing systems, multifunctional materials, and remote sensing. Recognizing that many measurement technologies may overlap between sections, we define distributed sensing solutions as those that involve or imply the utilization of numbers of sensors geometrically organized within (embedded) or over (surface) the monitored component or system. Multi-functional materials are sensing solutions that combine multiple capabilities, for example those also serving structural functions. Remote sensing are solutions that are contactless, for example cell phones, drones, and satellites. It also includes the notion of remotely controlled robots

    Perception of Unstructured Environments for Autonomous Off-Road Vehicles

    Get PDF
    Autonome Fahrzeuge benötigen die FĂ€higkeit zur Perzeption als eine notwendige Voraussetzung fĂŒr eine kontrollierbare und sichere Interaktion, um ihre Umgebung wahrzunehmen und zu verstehen. Perzeption fĂŒr strukturierte Innen- und Außenumgebungen deckt wirtschaftlich lukrative Bereiche, wie den autonomen Personentransport oder die Industrierobotik ab, wĂ€hrend die Perzeption unstrukturierter Umgebungen im Forschungsfeld der Umgebungswahrnehmung stark unterreprĂ€sentiert ist. Die analysierten unstrukturierten Umgebungen stellen eine besondere Herausforderung dar, da die vorhandenen, natĂŒrlichen und gewachsenen Geometrien meist keine homogene Struktur aufweisen und Ă€hnliche Texturen sowie schwer zu trennende Objekte dominieren. Dies erschwert die Erfassung dieser Umgebungen und deren Interpretation, sodass Perzeptionsmethoden speziell fĂŒr diesen Anwendungsbereich konzipiert und optimiert werden mĂŒssen. In dieser Dissertation werden neuartige und optimierte Perzeptionsmethoden fĂŒr unstrukturierte Umgebungen vorgeschlagen und in einer ganzheitlichen, dreistufigen Pipeline fĂŒr autonome GelĂ€ndefahrzeuge kombiniert: Low-Level-, Mid-Level- und High-Level-Perzeption. Die vorgeschlagenen klassischen Methoden und maschinellen Lernmethoden (ML) zur Perzeption bzw.~Wahrnehmung ergĂ€nzen sich gegenseitig. DarĂŒber hinaus ermöglicht die Kombination von Perzeptions- und Validierungsmethoden fĂŒr jede Ebene eine zuverlĂ€ssige Wahrnehmung der möglicherweise unbekannten Umgebung, wobei lose und eng gekoppelte Validierungsmethoden kombiniert werden, um eine ausreichende, aber flexible Bewertung der vorgeschlagenen Perzeptionsmethoden zu gewĂ€hrleisten. Alle Methoden wurden als einzelne Module innerhalb der in dieser Arbeit vorgeschlagenen Perzeptions- und Validierungspipeline entwickelt, und ihre flexible Kombination ermöglicht verschiedene Pipelinedesigns fĂŒr eine Vielzahl von GelĂ€ndefahrzeugen und AnwendungsfĂ€llen je nach Bedarf. Low-Level-Perzeption gewĂ€hrleistet eine eng gekoppelte Konfidenzbewertung fĂŒr rohe 2D- und 3D-Sensordaten, um SensorausfĂ€lle zu erkennen und eine ausreichende Genauigkeit der Sensordaten zu gewĂ€hrleisten. DarĂŒber hinaus werden neuartige Kalibrierungs- und RegistrierungsansĂ€tze fĂŒr Multisensorsysteme in der Perzeption vorgestellt, welche lediglich die Struktur der Umgebung nutzen, um die erfassten Sensordaten zu registrieren: ein halbautomatischer Registrierungsansatz zur Registrierung mehrerer 3D~Light Detection and Ranging (LiDAR) Sensoren und ein vertrauensbasiertes Framework, welches verschiedene Registrierungsmethoden kombiniert und die Registrierung verschiedener Sensoren mit unterschiedlichen Messprinzipien ermöglicht. Dabei validiert die Kombination mehrerer Registrierungsmethoden die Registrierungsergebnisse in einer eng gekoppelten Weise. Mid-Level-Perzeption ermöglicht die 3D-Rekonstruktion unstrukturierter Umgebungen mit zwei Verfahren zur SchĂ€tzung der DisparitĂ€t von Stereobildern: ein klassisches, korrelationsbasiertes Verfahren fĂŒr Hyperspektralbilder, welches eine begrenzte Menge an Test- und Validierungsdaten erfordert, und ein zweites Verfahren, welches die DisparitĂ€t aus Graustufenbildern mit neuronalen Faltungsnetzen (CNNs) schĂ€tzt. Neuartige DisparitĂ€tsfehlermetriken und eine Evaluierungs-Toolbox fĂŒr die 3D-Rekonstruktion von Stereobildern ergĂ€nzen die vorgeschlagenen Methoden zur DisparitĂ€tsschĂ€tzung aus Stereobildern und ermöglichen deren lose gekoppelte Validierung. High-Level-Perzeption konzentriert sich auf die Interpretation von einzelnen 3D-Punktwolken zur Befahrbarkeitsanalyse, Objekterkennung und Hindernisvermeidung. Eine DomĂ€nentransferanalyse fĂŒr State-of-the-art-Methoden zur semantischen 3D-Segmentierung liefert Empfehlungen fĂŒr eine möglichst exakte Segmentierung in neuen ZieldomĂ€nen ohne eine Generierung neuer Trainingsdaten. Der vorgestellte Trainingsansatz fĂŒr 3D-Segmentierungsverfahren mit CNNs kann die benötigte Menge an Trainingsdaten weiter reduzieren. Methoden zur ErklĂ€rbarkeit kĂŒnstlicher Intelligenz vor und nach der Modellierung ermöglichen eine lose gekoppelte Validierung der vorgeschlagenen High-Level-Methoden mit Datensatzbewertung und modellunabhĂ€ngigen ErklĂ€rungen fĂŒr CNN-Vorhersagen. Altlastensanierung und MilitĂ€rlogistik sind die beiden HauptanwendungsfĂ€lle in unstrukturierten Umgebungen, welche in dieser Arbeit behandelt werden. Diese Anwendungsszenarien zeigen auch, wie die LĂŒcke zwischen der Entwicklung einzelner Methoden und ihrer Integration in die Verarbeitungskette fĂŒr autonome GelĂ€ndefahrzeuge mit Lokalisierung, Kartierung, Planung und Steuerung geschlossen werden kann. Zusammenfassend lĂ€sst sich sagen, dass die vorgeschlagene Pipeline flexible Perzeptionslösungen fĂŒr autonome GelĂ€ndefahrzeuge bietet und die begleitende Validierung eine exakte und vertrauenswĂŒrdige Perzeption unstrukturierter Umgebungen gewĂ€hrleistet

    Intelligent Sensor Networks

    Get PDF
    In the last decade, wireless or wired sensor networks have attracted much attention. However, most designs target general sensor network issues including protocol stack (routing, MAC, etc.) and security issues. This book focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on their world-class research, the authors present the fundamentals of intelligent sensor networks. They cover sensing and sampling, distributed signal processing, and intelligent signal learning. In addition, they present cutting-edge research results from leading experts

    Roadmap on measurement technologies for next generation structural health monitoring systems

    Get PDF
    Structural health monitoring (SHM) is the automation of the condition assessment process of an engineered system. When applied to geometrically large components or structures, such as those found in civil and aerospace infrastructure and systems, a critical challenge is in designing the sensing solution that could yield actionable information. This is a difficult task to conduct cost-effectively, because of the large surfaces under consideration and the localized nature of typical defects and damages. There have been significant research efforts in empowering conventional measurement technologies for applications to SHM in order to improve performance of the condition assessment process. Yet, the field implementation of these SHM solutions is still in its infancy, attributable to various economic and technical challenges. The objective of this Roadmap publication is to discuss modern measurement technologies that were developed for SHM purposes, along with their associated challenges and opportunities, and to provide a path to research and development efforts that could yield impactful field applications. The Roadmap is organized into four sections: distributed embedded sensing systems, distributed surface sensing systems, multifunctional materials, and remote sensing. Recognizing that many measurement technologies may overlap between sections, we define distributed sensing solutions as those that involve or imply the utilization of numbers of sensors geometrically organized within (embedded) or over (surface) the monitored component or system. Multi-functional materials are sensing solutions that combine multiple capabilities, for example those also serving structural functions. Remote sensing are solutions that are contactless, for example cell phones, drones, and satellites. It also includes the notion of remotely controlled robots

    Sensing Mountains

    Get PDF
    Sensing mountains by close-range and remote techniques is a challenging task. The 4th edition of the international Innsbruck Summer School of Alpine Research 2022 – Close-range Sensing Techniques in Alpine Terrain brings together early career and experienced scientists from technical-, geo- and environmental-related research fields. The interdisciplinary setting of the summer school creates a creative space for exchanging and learning new concepts and solutions for mapping, monitoring and quantifying mountain environments under ongoing conditions of change

    ESSE 2017. Proceedings of the International Conference on Environmental Science and Sustainable Energy

    Get PDF
    Environmental science is an interdisciplinary academic field that integrates physical-, biological-, and information sciences to study and solve environmental problems. ESSE - The International Conference on Environmental Science and Sustainable Energy provides a platform for experts, professionals, and researchers to share updated information and stimulate the communication with each other. In 2017 it was held in Suzhou, China June 23-25, 2017

    Optical Methods in Sensing and Imaging for Medical and Biological Applications

    Get PDF
    The recent advances in optical sources and detectors have opened up new opportunities for sensing and imaging techniques which can be successfully used in biomedical and healthcare applications. This book, entitled ‘Optical Methods in Sensing and Imaging for Medical and Biological Applications’, focuses on various aspects of the research and development related to these areas. The book will be a valuable source of information presenting the recent advances in optical methods and novel techniques, as well as their applications in the fields of biomedicine and healthcare, to anyone interested in this subject

    Remote Sensing Applications in Coastal Environment

    Get PDF
    Coastal regions are susceptible to rapid changes, as they constitute the boundary between the land and the sea. The resilience of a particular segment of coast depends on many factors, including climate change, sea-level changes, natural and technological hazards, extraction of natural resources, population growth, and tourism. Recent research highlights the strong capabilities for remote sensing applications to monitor, inventory, and analyze the coastal environment. This book contains 12 high-quality and innovative scientific papers that explore, evaluate, and implement the use of remote sensing sensors within both natural and built coastal environments

    Remote Sensing

    Get PDF
    This dual conception of remote sensing brought us to the idea of preparing two different books; in addition to the first book which displays recent advances in remote sensing applications, this book is devoted to new techniques for data processing, sensors and platforms. We do not intend this book to cover all aspects of remote sensing techniques and platforms, since it would be an impossible task for a single volume. Instead, we have collected a number of high-quality, original and representative contributions in those areas
    • 

    corecore