107 research outputs found

    Multihomed mobile network architecture

    Get PDF
    IP mobility ensures network reachability and session continuity while IPv6 networks are on the move. In the Network Mobility (NEMO) model, the potential for NEMO Mobile Routers (MRs) to interconnect and extend Internet connectivity allows the formation Nested NEMO networks. With MANEMO, nested MRs can be efficiently interconnected in a tree-based structure with Internet access being maintained via a designated Gateway. However, this only supports single-homed Internet connectivity. With the span of wireless access technologies and the popularity of multi-interfaced devices, multihoming support in this scenario becomes critical. A Nested Mobile Network with heterogeneous available Internet access options would allow better overall network performance and optimal utilisation of available resources. In this paper, we present the Multihomed Mobile Network Architecture (MMNA), a comprehensive multihomed mobility solution. It provides a multihoming management mechanism for Gateway Discovery and Selection on top of a multihomed mobility model integrating different mobility and multihoming protocols. It enables a complex nested multihomed topology to be established with multiple gateways supporting heterogeneous Internet access. The results demonstrate that the proposed solution achieves better overall throughput, load sharing, and link failure recovery

    State-of-the-Art Multihoming Protocols and Support for Android

    Get PDF
    Il traguardo più importante per la connettività wireless del futuro sarà sfruttare appieno le potenzialità offerte da tutte le interfacce di rete dei dispositivi mobili. Per questo motivo con ogni probabilità il multihoming sarà un requisito obbligatorio per quelle applicazioni che puntano a fornire la migliore esperienza utente nel loro utilizzo. Sinteticamente è possibile definire il multihoming come quel processo complesso per cui un end-host o un end-site ha molteplici punti di aggancio alla rete. Nella pratica, tuttavia, il multihoming si è rivelato difficile da implementare e ancor di più da ottimizzare. Ad oggi infatti, il multihoming è lontano dall’essere considerato una feature standard nel network deployment nonostante anni di ricerche e di sviluppo nel settore, poiché il relativo supporto da parte dei protocolli è quasi sempre del tutto inadeguato. Naturalmente anche per Android in quanto piattaforma mobile più usata al mondo, è di fondamentale importanza supportare il multihoming per ampliare lo spettro delle funzionalità offerte ai propri utenti. Dunque alla luce di ciò, in questa tesi espongo lo stato dell’arte del supporto al multihoming in Android mettendo a confronto diversi protocolli di rete e testando la soluzione che sembra essere in assoluto la più promettente: LISP. Esaminato lo stato dell’arte dei protocolli con supporto al multihoming e l’architettura software di LISPmob per Android, l’obiettivo operativo principale di questa ricerca è duplice: a) testare il roaming seamless tra le varie interfacce di rete di un dispositivo Android, il che è appunto uno degli obiettivi del multihoming, attraverso LISPmob; e b) effettuare un ampio numero di test al fine di ottenere attraverso dati sperimentali alcuni importanti parametri relativi alle performance di LISP per capire quanto è realistica la possibilità da parte dell’utente finale di usarlo come efficace soluzione multihoming

    Quality management of surveillance multimedia streams via federated SDN controllers in Fiwi-iot integrated deployment environments

    Get PDF
    Traditionally, hybrid optical-wireless networks (Fiber-Wireless - FiWi domain) and last-mile Internet of Things edge networks (Edge IoT domain) have been considered independently, with no synergic management solutions. On the one hand, FiWi has primarily focused on high-bandwidth and low-latency access to cellular-equipped nodes. On the other hand, Edge IoT has mainly aimed at effective dispatching of sensor/actuator data among (possibly opportunistic) nodes, by using direct peer-to-peer and base station (BS)-assisted Internet communications. The paper originally proposes a model and an architecture that loosely federate FiWi and Edge IoT domains based on the interaction of FiWi and Edge IoT software defined networking controllers: The primary idea is that our federated controllers can seldom exchange monitoring data and control hints the one with the other, thus mutually enhancing their capability of end-to-end quality-aware packet management. To show the applicability and the effectiveness of the approach, our original proposal is applied to the notable example of multimedia stream provisioning from surveillance cameras deployed in the Edge IoT domain to both an infrastructure-side server and spontaneously interconnected mobile smartphones; our solution is able to tune the BS behavior of the FiWi domain and to reroute/prioritize traffic in the Edge IoT domain, with the final goal to reduce latency. In addition, the reported application case shows the capability of our solution of joint and coordinated exploitation of resources in FiWi and Edge IoT domains, with performance results that highlight its benefits in terms of efficiency and responsiveness

    MROM scheme to improve handoff performance in mobile networks

    Get PDF
    Mobile Router (MR) mobility supported by Network Mobility Basic Support Protocol (NEMO BS) is a Mobile IPv6 (MIPv6) extension that supports Host Mobility. Proposed Multihoming and Route Optimization for MANEMO (MROM) scheme is designed to provide Route Optimization (RO) and Multihomed in NEMO architectures. This paper proposes two novel schemes; MANEMO routing scheme and Multihoming-based scheme. These are to provide support for next generation networks. The proposed MROM scheme differs from other schemes for NEMO environment because it considers the requirements of more application flows parameters as packet lost delivery, handoff delay as well as throughput). Another difference is that not only the network infrastructure can begin the functionality of flow routing, but also an Edge Mobile Router (EMR) can do this flow for routing. Moreover, it utilizes the state of the art and presently active access network to perform the separation of each flow in mobile network. Thus, proposed MROM exhibits multihoming features and improves handoff performance by initiating flow-based fast registration process in NEMO environment. A handoff method is proposed with enhanced functionalities of the Local Mobility Anchors (LMA), Mobile Routers (MRs) and signaling messages with a view to achieve continuous connectivity through handoff in NEMO. Both analytical and simulation approaches are used. Analytical evaluation is carried out to analyze packet delivery lost and handoff delay of our proposed scheme. It was also shown that cost of signaling messages and packet delivery are contributing to total handoff cost. At the simulation part, network simulator 3 (NS 3) has been used as the tool to get performance metrics that have been considered like packet delivery ratio, handoff delay, and packet loss. Our proposed scheme (MROM) has been benchmarking to the standard NEMO BS Protocol and P-NEMO. In this paper, we discuss proposed MROM for next generation networks, providing detailed analysis with a numerical model, proposed MROM, by maximizing the handoff performance, has been justified to have better mobility support than the ordinary NEMO BS Protocol and PNEMO. Keywords—MROM, MANEMO, RO, Multihomed, Handoff

    IP Flow Mobility support for Proxy Mobile IPv6 based networks

    Get PDF
    The ability of offloading selected IP data traffic from 3G to WLAN access networks is considered a key feature in the upcoming 3GPP specifications, being the main goal to alleviate data congestion in celular networks while delivering a positive user experience. Lately, the 3GPP has adopted solutions that enable mobility of IP-based wireless devices relocating mobility functions from the terminal to the network. To this end, the IETF has standardized Proxy Mobile IPv6 (PMIPv6), a protocol capable to hide often complex mobility procedures from the mobile devices. This thesis, in line with the mentioned offload requirement, further extends Proxy Mobile IPv6 to support dynamic IP flow mobility management across access wireless networks according to operator policies. In this work, we assess the feasibility of the proposed solution and provide an experimental analysis based on a prototype network setup, implementing the PMIPv6 protocol and the related enhancements for flow mobility support. *** La capacità di spostare flussi IP da una rete di accesso 3G ad una di tipo WLAN è considerata una caratteristica chiave nelle specifiche future di 3GPP, essendo il principale metodo per alleviare la congestione nelle reti cellulari mantenendo al contempo una ragionevole qualità percepita dall'utente. Recentemente, 3GPP ha adottato soluzioni di mobilità per dispositivi con accesso radio basato su IP, traslando le funzioni di supporto dal terminale alla rete, e, a questo scopo, IETF ha standardizzato Proxy Mobile IPv6 (PMIPv6), un protocollo studiato per nascondere le procedure di mobilità ai sistemi mobili. Questa tesi, in linea con la citata esigenza di spostare flussi IP, estende ulteriormente PMIPv6 per consentire il supporto alla mobilità di flussi tra diverse reti di accesso wireless, assecondando le regole e/o politiche definite da un operatore. In questo lavoro, ci proponiamo di asserire la fattibilità della soluzione proposta, fornendo un'analisi sperimentale di essa sulla base di un prototipo di rete che implementa il protocollo PMIPv6 e le relative migliorie per il supporto alla mobilità di flussiope
    • …
    corecore