760 research outputs found

    Natural‐language processing applied to an ITS interface

    Get PDF
    The aim of this paper is to show that with a subset of a natural language, simple systems running on PCs can be developed that can nevertheless be an effective tool for interfacing purposes in the building of an Intelligent Tutoring System (ITS). After presenting the special characteristics of the Smalltalk/V language, which provides an appropriate environment for the development of an interface, the overall architecture of the interface module is discussed. We then show how sentences are parsed by the interface, and how interaction takes place with the user. The knowledge‐acquisition phase is subsequently described. Finally, some excerpts from a tutoring session concerned with elementary geometry are discussed, and some of the problems and limitations of the approach are illustrated

    Refactoring Functional Programs

    Get PDF
    Refactoring is the process of redesigning existing code without changing its functionality. Refactoring has recently come to prominence in the OO community. In this paper we explore the prospects for refactoring functional programs. Our paper centres on the case study of refactoring a 400 line Haskell program written by one of our students. The case study illustrates the type and variety of program manipulations involved in refactoring. Similarly to other program transformations, refactorings are based on program equivalences, and thus ultimately on language semantics. In the context of functional languages, refactorings can be based on existing theory and program analyses. However, the use of program transformations for program restructuring emphasises a different kind of transformation from the more traditional derivation or optimisation: characteristically, they often require wholesale changes to a collection of modules, and although they are best controlled by programmers, their application may require nontrivial semantic analyses. The paper also explores the background to refactoring, provides a taxonomy for describing refactorings and draws some conclusions about refactoring for functional programs

    A Graphical Environment Supporting the Algebraic Specification of Abstract Data Types

    Get PDF
    Abstract Data Types (ADTs) are a powerful conceptual and practical device for building high-quality software because of the way they can describe objects whilst hiding the details of how they are represented within a computer. In order to implement ADTs correctly, it is first necessary to precisely describe their properties and behaviour, typically within a mathematical framework such as algebraic specification. These techniques are no longer merely research topics but are now tools used by software practitioners. Unfortunately, the high level of mathematical sophistication required to exploit these methods has made them unattractive to a large portion of their intended audience. This thesis investigates the use of computer graphics as a way of making the formal specification of ADTs more palatable. Computer graphics technology has recently been explored as a way of making computer programs more understandable by revealing aspects of their structure and run-time behaviour that are usually hidden in textual representations. These graphical techniques can also be used to create and edit programs. Although such visualisation techniques have been incorporated into tools supporting several phases of software development, a survey presented in this thesis of existing systems reveals that their application to supporting the formal specification of ADTs has so far been ignored. This thesis describes the development of a prototype tool (called VISAGE) for visualising and visually programming formally-specified ADTs. VISAGE uses a synchronised combination of textual and graphical views to illustrate the various facets of an ADT's structure and behaviour. The graphical views use both static and dynamic representations developed specifically for this domain. VISAGE's visual programming facility has powerful mechanisms for creating and manipulating entire structures (as well as their components) that make it at least comparable with textual methods. In recognition of the importance of examples as a way of illustrating abstract concepts, VISAGE provides a dedicated tool (called the PLAYPEN) that allows the creation of example data by the user. These data can then be transformed by the operations belonging to the ADT with the result shown by means of a dynamic, graphical display. An evaluation of VISAGE was conducted in order to detect any improvement in subjects' performance, confidence and understanding of ADT specifications. The subjects were asked to perform a set of simple specification tasks with some using VISAGE and the others using manual techniques to act as a control. An analysis of the results shows a distinct positive reaction from the VISAGE group that was completely absent in the control group thereby supporting the thesis that the algebraic specification of ADTs can be made more accessible and palatable though the use of computer graphic techniques

    A Case Study in Refactoring Functional Programs

    Get PDF
    Refactoring is the process of redesigning existing code without changing its functionality. Refactoring has recently come to prominence in the OO community. In this paper we explore the prospects for refactoring functional programs. Our paper centres on the case study of refactoring a 400 line Haskell program written by one of our students. The case study illustrates the type and variety of program manipulations involved in refactoring. Similarly to other program transformations, refactorings are based on program equivalences, and thus ultimately on language semantics. In the context of functional languages, refactorings can be based on existing theory and program analyses. However, the use of program transformations for program restructuring emphasises a different kind of transformation from the more traditional derivation or optimisation: characteristically, they often require wholesale changes to a collection of modules, and although they are best controlled by programmers, their application may require nontrivial semantic analyses. The paper also explores the background to refactoring, provides a taxonomy for describing refactorings and draws some conclusions about refactoring for functional programs

    Several types of types in programming languages

    Get PDF
    Types are an important part of any modern programming language, but we often forget that the concept of type we understand nowadays is not the same it was perceived in the sixties. Moreover, we conflate the concept of "type" in programming languages with the concept of the same name in mathematical logic, an identification that is only the result of the convergence of two different paths, which started apart with different aims. The paper will present several remarks (some historical, some of more conceptual character) on the subject, as a basis for a further investigation. The thesis we will argue is that there are three different characters at play in programming languages, all of them now called types: the technical concept used in language design to guide implementation; the general abstraction mechanism used as a modelling tool; the classifying tool inherited from mathematical logic. We will suggest three possible dates ad quem for their presence in the programming language literature, suggesting that the emergence of the concept of type in computer science is relatively independent from the logical tradition, until the Curry-Howard isomorphism will make an explicit bridge between them.Comment: History and Philosophy of Computing, HAPOC 2015. To appear in LNC

    Waterfall: Primitives Generation on the Fly

    No full text
    Modern languages are typically supported by managed runtimes (Virtual Machines). Since VMs have to deal with many concepts such as memory management, abstract execution model and scheduling, they tend to be very complex. Additionally, VMs have to meet strong performance requirements. This demand of performance is one of the main reasons why many VMs are built statically. Thus, design decisions are frozen at compile time preventing changes at runtime. One clear example is the impossibility to dynamically adapt or change primitives of the VM once it has been compiled. In this work we present a toolchain that allows for altering and configuring components such as primitives and plug-ins at runtime. The main contribution is Waterfall, a dynamic and reflective translator from Slang, a restricted subset of Smalltalk, to native code. Waterfall generates primitives on demand and executes them on the fly. We validate our approach by implementing dynamic primitive modification and runtime customization of VM plug-ins

    Abstract State Machines 1988-1998: Commented ASM Bibliography

    Get PDF
    An annotated bibliography of papers which deal with or use Abstract State Machines (ASMs), as of January 1998.Comment: Also maintained as a BibTeX file at http://www.eecs.umich.edu/gasm

    Value Types in Eiffel

    Get PDF
    Identifies a number of problems with Eiffel's expanded types in modelling value types, and proposes a backward compatible syntactic extension, and a modified semantics. The latter is also shown to be (effectively) backward compatible, in the sense that existing programs would run unaffected if compilers implemented the new semantics. The benefits of the approach are discussed, including an elegant approach to rebuilding data structure libraries
    • 

    corecore