33 research outputs found

    Energy Based Control System Designs for Underactuated Robot Fish Propulsion

    Get PDF
    In nature through millions of years of evolution fish and cetaceans have developed fast efficient and highly manoeuvrable methods of marine propulsion. A recent explosion in demand for sub sea robotics, for conducting tasks such as sub sea exploration and survey has left developers desiring to capture some of the novel mechanisms evolved by fish and cetaceans to increase the efficiency of speed and manoeuvrability of sub sea robots. Research has revealed that interactions with vortices and other unsteady fluid effects play a significant role in the efficiency of fish and cetaceans. However attempts to duplicate this with robotic fish have been limited by the difficulty of predicting or sensing such uncertain fluid effects. This study aims to develop a gait generation method for a robotic fish with a degree of passivity which could allow the body to dynamically interact with and potentially synchronise with vortices within the flow without the need to actually sense them. In this study this is achieved through the development of a novel energy based gait generation tactic, where the gait of the robotic fish is determined through regulation of the state energy rather than absolute state position. Rather than treating fluid interactions as undesirable disturbances and `fighting' them to maintain a rigid geometric defined gait, energy based control allows the disturbances to the system generated by vortices in the surrounding flow to contribute to the energy of the system and hence the dynamic motion. Three different energy controllers are presented within this thesis, a deadbeat energy controller equivalent to an analytically optimised model predictive controller, a HH_\infty disturbance rejecting controller with a novel gradient decent optimisation and finally a error feedback controller with a novel alternative error metric. The controllers were tested on a robotic fish simulation platform developed within this project. The simulation platform consisted of the solution of a series of ordinary differential equations for solid body dynamics coupled with a finite element incompressible fluid dynamic simulation of the surrounding flow. results demonstrated the effectiveness of the energy based control approach and illustrate the importance of choice of controller in performance

    Advanced Bionic Attachment Equipment Inspired by the Attachment Performance of Aquatic Organisms: A Review

    Get PDF
    In nature, aquatic organisms have evolved various attachment systems, and their attachment ability has become a specific and mysterious survival skill for them. Therefore, it is significant to study and use their unique attachment surfaces and outstanding attachment characteristics for reference and develop new attachment equipment with excellent performance. Based on this, in this review, the unique non-smooth surface morphologies of their suction cups are classified and the key roles of these special surface morphologies in the attachment process are introduced in detail. The recent research on the attachment capacity of aquatic suction cups and other related attachment studies are described. Emphatically, the research progress of advanced bionic attachment equipment and technology in recent years, including attachment robots, flexible grasping manipulators, suction cup accessories, micro-suction cup patches, etc., is summarized. Finally, the existing problems and challenges in the field of biomimetic attachment are analyzed, and the focus and direction of biomimetic attachment research in the future are pointed out

    Locomation strategies for amphibious robots-a review

    Get PDF
    In the past two decades, unmanned amphibious robots have proven the most promising and efficient systems ranging from scientific, military, and commercial applications. The applications like monitoring, surveillance, reconnaissance, and military combat operations require platforms to maneuver on challenging, complex, rugged terrains and diverse environments. The recent technological advancements and development in aquatic robotics and mobile robotics have facilitated a more agile, robust, and efficient amphibious robots maneuvering in multiple environments and various terrain profiles. Amphibious robot locomotion inspired by nature, such as amphibians, offers augmented flexibility, improved adaptability, and higher mobility over terrestrial, aquatic, and aerial mediums. In this review, amphibious robots' locomotion mechanism designed and developed previously are consolidated, systematically The review also analyzes the literature on amphibious robot highlighting the limitations, open research areas, recent key development in this research field. Further development and contributions to amphibious robot locomotion, actuation, and control can be utilized to perform specific missions in sophisticated environments, where tasks are unsafe or hardly feasible for the divers or traditional aquatic and terrestrial robots

    Learning Terrain Dynamics: A Gaussian Process Modeling and Optimal Control Adaptation Framework Applied to Robotic Jumping

    Get PDF
    The complex dynamics characterizing deformable terrain presents significant impediments toward the real-world viability of locomotive robotics, particularly for legged machines. We explore vertical, robotic jumping as a model task for legged locomotion on presumed-uncharacterized, nonrigid terrain. By integrating Gaussian process (GP)-based regression and evaluation to estimate ground reaction forces as a function of the state, a 1-D jumper acquires the capability to learn forcing profiles exerted by its environment in tandem with achieving its control objective. The GP-based dynamical model initially assumes a baseline rigid, noncompliant surface. As part of an iterative procedure, the optimizer employing this model generates an optimal control strategy to achieve a target jump height. Experiential data recovered from execution on the true surface model are applied to train the GP, in turn, providing the optimizer a more richly informed dynamical model of the environment. The iterative control-learning procedure was rigorously evaluated in experiment, over different surface types, whereby a robotic hopper was challenged to jump to several different target heights. Each task was achieved within ten attempts, over which the terrain's dynamics were learned. With each iteration, GP predictions of ground forcing became incrementally refined, rapidly matching experimental force measurements. The few-iteration convergence demonstrates a fundamental capacity to both estimate and adapt to unknown terrain dynamics in application-realistic time scales, all with control tools amenable to robotic legged locomotion

    Underwater Vehicles

    Get PDF
    For the latest twenty to thirty years, a significant number of AUVs has been created for the solving of wide spectrum of scientific and applied tasks of ocean development and research. For the short time period the AUVs have shown the efficiency at performance of complex search and inspection works and opened a number of new important applications. Initially the information about AUVs had mainly review-advertising character but now more attention is paid to practical achievements, problems and systems technologies. AUVs are losing their prototype status and have become a fully operational, reliable and effective tool and modern multi-purpose AUVs represent the new class of underwater robotic objects with inherent tasks and practical applications, particular features of technology, systems structure and functional properties

    Design and computational aspects of compliant tensegrity robots

    Get PDF

    Mechatronics design of a robot society : a case study of minimalist underwater robots for distributed perception and task execution

    Get PDF
    This thesis describes the mechatronics design of a cooperative multi-robot system, including systems level design, practical implementation, and testing. Two main subjects are integrated in this research work: the generic concept of a Robot Society as an engineering framework to control an autonomously operating distributed multi-robot system, and the constructed prototype society consisting of several sensor/actuator robots for submerged use in a liquid environment. These novel types of prototype robots, SUBMARs, are targeted for distributed autonomous perception and task execution in the internal, three-dimensional on-line monitoring of various flow-through processes. The Robot Society control architecture implemented into SUBMAR robots supports such features as the autonomous cooperation of the robots, multi-tasking, self-organization, and selfoptimization in task execution. The mechatronics design of the robots has followed a minimalist approach, where the structure of the robot is maximally simplified. As a solution to compensate the obvious limitations derived from minimalism, the multiplicity and the cooperation of the robots have been exploited. On a systems level, this produces fault tolerant, flexible, and cost-effective engineering solutions for application. Altogether over 90 logged experiment runs with physical robots have been completed to elucidate the functioning and reveal the factors affecting the performance of the system. The testing has been performed in a laboratory environment in a special demonstration process. In these experiment series, the searching and destroying of distributed dynamic targets were tested. Furthermore, the meaning of communication in the development of robot consciousness during the mission has also been analyzed. As a result of the research work and systems development, profound knowledge has been gained and new solutions presented for the required technology for a minimalist mobile robot operating in a liquid process environment. SUBMAR Robot Society forms a technological basis for the development of real-world applications in the future.reviewe

    Viability in State-Action Space: Connecting Morphology, Control, and Learning

    Get PDF
    Wie können wir Robotern ermöglichen, modellfrei und direkt auf der Hardware zu lernen? Das maschinelle Lernen nimmt als Standardwerkzeug im Arsenal des Robotikers seinen Platz ein. Es gibt jedoch einige offene Fragen, wie man die Kontrolle über physikalische Systeme lernen kann. Diese Arbeit gibt zwei Antworten auf diese motivierende Frage. Das erste ist ein formales Mittel, um die inhärente Robustheit eines gegebenen Systemdesigns zu quantifizieren, bevor der Controller oder das Lernverfahren entworfen wird. Dies unterstreicht die Notwendigkeit, sowohl das Hardals auch das Software-Design eines Roboters zu berücksichtigen, da beide Aspekte in der Systemdynamik untrennbar miteinander verbunden sind. Die zweite ist die Formalisierung einer Sicherheitsmass, die modellfrei erlernt werden kann. Intuitiv zeigt diese Mass an, wie leicht ein Roboter Fehlschläge vermeiden kann. Auf diese Weise können Roboter unbekannte Umgebungen erkunden und gleichzeitig Ausfälle vermeiden. Die wichtigsten Beiträge dieser Dissertation basieren sich auf der Viabilitätstheorie. Viabilität bietet eine alternative Sichtweise auf dynamische Systeme: Anstatt sich auf die Konvergenzeigenschaften eines Systems in Richtung Gleichgewichte zu konzentrieren, wird der Fokus auf Menge von Fehlerzuständen und die Fähigkeit des Systems, diese zu vermeiden, verlagert. Diese Sichtweise eignet sich besonders gut für das Studium der Lernkontrolle an Robotern, da Stabilität im Sinne einer Konvergenz während des Lernprozesses selten gewährleistet werden kann. Der Begriff der Viabilität wird formal auf den Zustand-Aktion-Raum erweitert, mit Viabilitätsmengen von Staat-Aktionspaaren. Eine über diese Mengen definierte Mass ermöglicht eine quantifizierte Bewertung der Robustheit, die für die Familie aller fehlervermeidenden Regler gilt, und ebnet den Weg für ein sicheres, modellfreies Lernen. Die Arbeit beinhaltet auch zwei kleinere Beiträge. Der erste kleine Beitrag ist eine empirische Demonstration der Shaping durch ausschliessliche Modifikation der Systemdynamik. Diese Demonstration verdeutlicht die Bedeutung der Robustheit gegenüber Fehlern für die Lernkontrolle: Ausfälle können nicht nur Schäden verursachen, sondern liefern in der Regel auch keine nützlichen Gradienteninformationen für den Lernprozess. Der zweite kleine Beitrag ist eine Studie über die Wahl der Zustandsinitialisierungen. Entgegen der Intuition und der üblichen Praxis zeigt diese Studie, dass es zuverlässiger sein kann, das System gelegentlich aus einem Zustand zu initialisieren, der bekanntermassen unkontrollierbar ist.How can we enable robots to learn control model-free and directly on hardware? Machine learning is taking its place as a standard tool in the roboticist’s arsenal. However, there are several open questions on how to learn control for physical systems. This thesis provides two answers to this motivating question. The first is a formal means to quantify the inherent robustness of a given system design, prior to designing the controller or learning agent. This emphasizes the need to consider both the hardware and software design of a robot, which are inseparably intertwined in the system dynamics. The second is the formalization of a safety-measure, which can be learned model-free. Intuitively, this measure indicates how easily a robot can avoid failure, and enables robots to explore unknown environments while avoiding failures. The main contributions of this dissertation are based on viability theory. Viability theory provides a slightly unconventional view of dynamical systems: instead of focusing on a system’s convergence properties towards equilibria, the focus is shifted towards sets of failure states and the system’s ability to avoid these sets. This view is particularly well suited to studying learning control in robots, since stability in the sense of convergence can rarely be guaranteed during the learning process. The notion of viability is formally extended to state-action space, with viable sets of state-action pairs. A measure defined over these sets allows a quantified evaluation of robustness valid for the family of all failure-avoiding control policies, and also paves the way for enabling safe model-free learning. The thesis also includes two minor contributions. The first minor contribution is an empirical demonstration of shaping by exclusively modifying the system dynamics. This demonstration highlights the importance of robustness to failures for learning control: not only can failures cause damage, but they typically do not provide useful gradient information for the learning process. The second minor contribution is a study on the choice of state initializations. Counter to intuition and common practice, this study shows it can be more reliable to occasionally initialize the system from a state that is known to be uncontrollable
    corecore