5,568 research outputs found

    Network Identification for Diffusively-Coupled Systems with Minimal Time Complexity

    Full text link
    The theory of network identification, namely identifying the (weighted) interaction topology among a known number of agents, has been widely developed for linear agents. However, the theory for nonlinear agents using probing inputs is less developed and relies on dynamics linearization. We use global convergence properties of the network, which can be assured using passivity theory, to present a network identification method for nonlinear agents. We do so by linearizing the steady-state equations rather than the dynamics, achieving a sub-cubic time algorithm for network identification. We also study the problem of network identification from a complexity theory standpoint, showing that the presented algorithms are optimal in terms of time complexity. We also demonstrate the presented algorithm in two case studies.Comment: 12 pages, 3 figure
    • …
    corecore