55,740 research outputs found

    A Framework for Developing Real-Time OLAP algorithm using Multi-core processing and GPU: Heterogeneous Computing

    Full text link
    The overwhelmingly increasing amount of stored data has spurred researchers seeking different methods in order to optimally take advantage of it which mostly have faced a response time problem as a result of this enormous size of data. Most of solutions have suggested materialization as a favourite solution. However, such a solution cannot attain Real- Time answers anyhow. In this paper we propose a framework illustrating the barriers and suggested solutions in the way of achieving Real-Time OLAP answers that are significantly used in decision support systems and data warehouses

    Scalable Model-Based Management of Correlated Dimensional Time Series in ModelarDB+

    Full text link
    To monitor critical infrastructure, high quality sensors sampled at a high frequency are increasingly used. However, as they produce huge amounts of data, only simple aggregates are stored. This removes outliers and fluctuations that could indicate problems. As a remedy, we present a model-based approach for managing time series with dimensions that exploits correlation in and among time series. Specifically, we propose compressing groups of correlated time series using an extensible set of model types within a user-defined error bound (possibly zero). We name this new category of model-based compression methods for time series Multi-Model Group Compression (MMGC). We present the first MMGC method GOLEMM and extend model types to compress time series groups. We propose primitives for users to effectively define groups for differently sized data sets, and based on these, an automated grouping method using only the time series dimensions. We propose algorithms for executing simple and multi-dimensional aggregate queries on models. Last, we implement our methods in the Time Series Management System (TSMS) ModelarDB (ModelarDB+). Our evaluation shows that compared to widely used formats, ModelarDB+ provides up to 13.7 times faster ingestion due to high compression, 113 times better compression due to the adaptivity of GOLEMM, 630 times faster aggregates by using models, and close to linear scalability. It is also extensible and supports online query processing.Comment: 12 Pages, 28 Figures, and 1 Tabl

    cuIBM -- A GPU-accelerated Immersed Boundary Method

    Full text link
    A projection-based immersed boundary method is dominated by sparse linear algebra routines. Using the open-source Cusp library, we observe a speedup (with respect to a single CPU core) which reflects the constraints of a bandwidth-dominated problem on the GPU. Nevertheless, GPUs offer the capacity to solve large problems on commodity hardware. This work includes validation and a convergence study of the GPU-accelerated IBM, and various optimizations.Comment: Extended paper post-conference, presented at the 23rd International Conference on Parallel Computational Fluid Dynamics (http://www.parcfd.org), ParCFD 2011, Barcelona (unpublished

    Emergent Predication Structure in Hidden State Vectors of Neural Readers

    Full text link
    A significant number of neural architectures for reading comprehension have recently been developed and evaluated on large cloze-style datasets. We present experiments supporting the emergence of "predication structure" in the hidden state vectors of these readers. More specifically, we provide evidence that the hidden state vectors represent atomic formulas Φ[c]\Phi[c] where Φ\Phi is a semantic property (predicate) and cc is a constant symbol entity identifier.Comment: Accepted for Repl4NLP: 2nd Workshop on Representation Learning for NL
    corecore