181 research outputs found

    Real Time Structured Light and Applications

    Get PDF

    CompenNet++: End-to-end Full Projector Compensation

    Full text link
    Full projector compensation aims to modify a projector input image such that it can compensate for both geometric and photometric disturbance of the projection surface. Traditional methods usually solve the two parts separately, although they are known to correlate with each other. In this paper, we propose the first end-to-end solution, named CompenNet++, to solve the two problems jointly. Our work non-trivially extends CompenNet, which was recently proposed for photometric compensation with promising performance. First, we propose a novel geometric correction subnet, which is designed with a cascaded coarse-to-fine structure to learn the sampling grid directly from photometric sampling images. Second, by concatenating the geometric correction subset with CompenNet, CompenNet++ accomplishes full projector compensation and is end-to-end trainable. Third, after training, we significantly simplify both geometric and photometric compensation parts, and hence largely improves the running time efficiency. Moreover, we construct the first setup-independent full compensation benchmark to facilitate the study on this topic. In our thorough experiments, our method shows clear advantages over previous arts with promising compensation quality and meanwhile being practically convenient.Comment: To appear in ICCV 2019. High-res supplementary material: https://www3.cs.stonybrook.edu/~hling/publication/CompenNet++_sup-high-res.pdf. Code: https://github.com/BingyaoHuang/CompenNet-plusplu

    Advances in Stereo Vision

    Get PDF
    Stereopsis is a vision process whose geometrical foundation has been known for a long time, ever since the experiments by Wheatstone, in the 19th century. Nevertheless, its inner workings in biological organisms, as well as its emulation by computer systems, have proven elusive, and stereo vision remains a very active and challenging area of research nowadays. In this volume we have attempted to present a limited but relevant sample of the work being carried out in stereo vision, covering significant aspects both from the applied and from the theoretical standpoints

    Fusion of LIDAR with stereo camera data - an assessment

    Get PDF
    This thesis explores data fusion of LIDAR (laser range-finding) with stereo matching, with a particular emphasis on close-range industrial 3D imaging. Recently there has been interest in improving the robustness of stereo matching using data fusion with active range data. These range data have typically been acquired using time of flight cameras (ToFCs), however ToFCs offer poor spatial resolution and are noisy. Comparatively little work has been performed using LIDAR. It is argued that stereo and LIDAR are complementary and there are numerous advantages to integrating LIDAR into stereo systems. For instance, camera calibration is a necessary prerequisite for stereo 3D reconstruction, but the process is often tedious and requires precise calibration targets. It is shown that a visible-beam LIDAR enables automatic, accurate (sub-pixel) extrinsic and intrinsic camera calibration without any explicit targets. Two methods for using LIDAR to assist dense disparity maps from featureless scenes were investigated. The first involved using a LIDAR to provide high-confidence seed points for a region growing stereo matching algorithm. It is shown that these seed points allow dense matching in scenes which fail to match using stereo alone. Secondly, LIDAR was used to provide artificial texture in featureless image regions. Texture was generated by combining real or simulated images of every point the laser hits to form a pseudo-random pattern. Machine learning was used to determine the image regions that are most likely to be stereo- matched, reducing the number of LIDAR points required. Results are compared to competing techniques such as laser speckle, data projection and diffractive optical elements
    • …
    corecore