85 research outputs found

    Imaging Based Beam Steering for Optical Communication and Lidar Applications

    Get PDF
    Optical beam steering is a key component in any application that requires dynamic (i.e. realtime control) of beam propagation through free-space. Example applications include remote sensing, spectroscopy, laser machining, targeting, Lidar, optical wireless communications (OWC) and more. The pointing control requirements for many of these applications can be met by traditional mechanical steering techniques; however, these solutions tend to be bulky, slow, expensive, power hungry and prone to mechanical failures leading to short component lifetimes. Two emerging applications, Lidar imaging and OWC, truly need improved beam-steering capabilities to flourish and support the advancement of self-driving cars or relieve the congestion in radio-frequency wireless networks, respectively. We consider the novel requirements of these applications during development of a new beam-steering technology. We introduce imaging-based beam steering (IBBS) that uses an imaging transform between spatial and directional domains to implement a new method of electronic beam-steering. We introduce this concept while focusing on transmitters (Tx) for OWC but the pointing control mechanism is bi-directional supporting both transmit and receive functionality, even out of the same aperture; likewise, features that make this solution compelling for OWC are also great for Lidar imaging. In IBBS, an array of high-speed sources are positioned at the focal plane of a lens and the lens passively collects, collimates and steers the beam into a conjugate direction. Steering is accomplished by selecting which source to use for an OWC link. This gives a coarse, pixelated beam-steering control that is well-suited for short-range OWC such as indoor communications and we present a prototype bulb for this application. Notably, multiple sources can be utilized at once with each steered into its conjugate directions and this presents the first beam-steering technology that supports multiple beams out of a single aperture; this feature uniquely supports multiplexed communications and fast, high-resolution Lidar imaging

    Optical coupler design and experimental demonstration for 2.5D/3D heterogeneous integrated electronics

    Get PDF
    The objective of the dissertation is to theoretically design and experimentally demonstrate optical couplers for 2.5D/3D heterogeneous integrated electronics. In the first part, a new concept, "Equivalent Index Slab (EIS)" method, is proposed to extend the application of Rigorous Coupled-Wave Analysis (RCWA) to rectangular waveguide grating diffraction involving surface waves. RCWA-EIS method can be applied to optimize rectangular grating couplers with arbitrary profiles and to analyze the effects of angular misalignments on the coupling efficiency. In the second part, a fundamentally new coupling structure, Grating-Assisted-cylindrical-Resonant-Cavities (GARC) coupler, is introduced to achieve efficient and broadband interlayer coupling. GARC coupler is based on evanescent field coupling between waveguides and the interconnecting via, and the via serves as a cylindrical resonant cavity which is further assisted by the circular gratings to enhance the field. In the third part, a passive fiber alignment and assembly approach, Fiber-Interconnect Silicon Chiplet Technology (FISCT), is demonstrated using a combination of silicon micromachining and 3D printing to achieve efficient and convenient near-vertical fiber-to-chip coupling.Ph.D

    Advanced DSP Techniques for High-Capacity and Energy-Efficient Optical Fiber Communications

    Get PDF
    The rapid proliferation of the Internet has been driving communication networks closer and closer to their limits, while available bandwidth is disappearing due to an ever-increasing network load. Over the past decade, optical fiber communication technology has increased per fiber data rate from 10 Tb/s to exceeding 10 Pb/s. The major explosion came after the maturity of coherent detection and advanced digital signal processing (DSP). DSP has played a critical role in accommodating channel impairments mitigation, enabling advanced modulation formats for spectral efficiency transmission and realizing flexible bandwidth. This book aims to explore novel, advanced DSP techniques to enable multi-Tb/s/channel optical transmission to address pressing bandwidth and power-efficiency demands. It provides state-of-the-art advances and future perspectives of DSP as well

    2022 Roadmap on integrated quantum photonics

    Get PDF
    AbstractIntegrated photonics will play a key role in quantum systems as they grow from few-qubit prototypes to tens of thousands of qubits. The underlying optical quantum technologies can only be realized through the integration of these components onto quantum photonic integrated circuits (QPICs) with accompanying electronics. In the last decade, remarkable advances in quantum photonic integration have enabled table-top experiments to be scaled down to prototype chips with improvements in efficiency, robustness, and key performance metrics. These advances have enabled integrated quantum photonic technologies combining up to 650 optical and electrical components onto a single chip that are capable of programmable quantum information processing, chip-to-chip networking, hybrid quantum system integration, and high-speed communications. In this roadmap article, we highlight the status, current and future challenges, and emerging technologies in several key research areas in integrated quantum photonics, including photonic platforms, quantum and classical light sources, quantum frequency conversion, integrated detectors, and applications in computing, communications, and sensing. With advances in materials, photonic design architectures, fabrication and integration processes, packaging, and testing and benchmarking, in the next decade we can expect a transition from single- and few-function prototypes to large-scale integration of multi-functional and reconfigurable devices that will have a transformative impact on quantum information science and engineering

    Advanced Photonic Sciences

    Get PDF
    The new emerging field of photonics has significantly attracted the interest of many societies, professionals and researchers around the world. The great importance of this field is due to its applicability and possible utilization in almost all scientific and industrial areas. This book presents some advanced research topics in photonics. It consists of 16 chapters organized into three sections: Integrated Photonics, Photonic Materials and Photonic Applications. It can be said that this book is a good contribution for paving the way for further innovations in photonic technology. The chapters have been written and reviewed by well-experienced researchers in their fields. In their contributions they demonstrated the most profound knowledge and expertise for interested individuals in this expanding field. The book will be a good reference for experienced professionals, academics and researchers as well as young researchers only starting their carrier in this field

    Data distribution satellite

    Get PDF
    A description is given of a data distribution satellite (DDS) system. The DDS would operate in conjunction with the tracking and data relay satellite system to give ground-based users real time, two-way access to instruments in space and space-gathered data. The scope of work includes the following: (1) user requirements are derived; (2) communication scenarios are synthesized; (3) system design constraints and projected technology availability are identified; (4) DDS communications payload configuration is derived, and the satellite is designed; (5) requirements for earth terminals and network control are given; (6) system costs are estimated, both life cycle costs and user fees; and (7) technology developments are recommended, and a technology development plan is given. The most important results obtained are as follows: (1) a satellite designed for launch in 2007 is feasible and has 10 Gb/s capacity, 5.5 kW power, and 2000 kg mass; (2) DDS features include on-board baseband switching, use of Ku- and Ka-bands, multiple optical intersatellite links; and (3) system user costs are competitive with projected terrestrial communication costs
    corecore