251 research outputs found

    Brain-Switches for Asynchronous Brain−Computer Interfaces: A Systematic Review

    Get PDF
    A brain–computer interface (BCI) has been extensively studied to develop a novel communication system for disabled people using their brain activities. An asynchronous BCI system is more realistic and practical than a synchronous BCI system, in that, BCI commands can be generated whenever the user wants. However, the relatively low performance of an asynchronous BCI system is problematic because redundant BCI commands are required to correct false-positive operations. To significantly reduce the number of false-positive operations of an asynchronous BCI system, a two-step approach has been proposed using a brain-switch that first determines whether the user wants to use an asynchronous BCI system before the operation of the asynchronous BCI system. This study presents a systematic review of the state-of-the-art brain-switch techniques and future research directions. To this end, we reviewed brain-switch research articles published from 2000 to 2019 in terms of their (a) neuroimaging modality, (b) paradigm, (c) operation algorithm, and (d) performance

    Classification of Frequency and Phase Encoded Steady State Visual Evoked Potentials for Brain Computer Interface Speller Applications using Convolutional Neural Networks

    Get PDF
    Over the past decade there have been substantial improvements in vision based Brain-Computer Interface (BCI) spellers for quadriplegic patient populations. This thesis contains a review of the numerous bio-signals available to BCI researchers, as well as a brief chronology of foremost decoding methodologies used to date. Recent advances in classification accuracy and information transfer rate can be primarily attributed to time consuming patient specific parameter optimization procedures. The aim of the current study was to develop analysis software with potential ‘plug-in-and-play’ functionality. To this end, convolutional neural networks, presently established as state of the art analytical techniques for image processing, were utilized. The thesis herein defines deep convolutional neural network architecture for the offline classification of phase and frequency encoded SSVEP bio-signals. Networks were trained using an extensive 35 participant open source Electroencephalographic (EEG) benchmark dataset (Department of Bio-medical Engineering, Tsinghua University, Beijing). Average classification accuracies of 82.24% and information transfer rates of 22.22 bpm were achieved on a BCI naïve participant dataset for a 40 target alphanumeric display, in absence of any patient specific parameter optimization

    On the Relative Contribution of Deep Convolutional Neural Networks for SSVEP-based Bio-Signal Decoding in BCI Speller Applications

    Get PDF
    Brain-computer interfaces (BCI) harnessing Steady State Visual Evoked Potentials (SSVEP) manipulate the frequency and phase of visual stimuli to generate predictable oscillations in neural activity. For BCI spellers, oscillations are matched with alphanumeric characters allowing users to select target numbers and letters. Advances in BCI spellers can, in part, be accredited to subject-speci?c optimization, including; 1) custom electrode arrangements, 2) ?lter sub-band assessments and 3) stimulus parameter tuning. Here we apply deep convolutional neural networks (DCNN) demonstrating cross-subject functionality for the classi?cation of frequency and phase encoded SSVEP. Electroencephalogram (EEG) data are collected and classi?ed using the same parameters across subjects. Subjects ?xate forty randomly cued ?ickering characters (5 ×8 keyboard array) during concurrent wet-EEG acquisition. These data are provided by an open source SSVEP dataset. Our proposed DCNN, PodNet, achieves 86% and 77% of?ine Accuracy of Classi?cation across-subjects for two data capture periods, respectively, 6-seconds (information transfer rate= 40bpm) and 2-seconds (information transfer rate= 101bpm). Subjects demonstrating sub-optimal (< 70%) performance are classi?ed to similar levels after a short subject-speci?c training period. PodNet outperforms ?lter-bank canonical correlation analysis (FBCCA) for a low volume (3channel) clinically feasible occipital electrode con?guration. The networks de?ned in this study achieve functional performance for the largest number of SSVEP classes decoded via DCNN to date. Our results demonstrate PodNet achieves cross-subject, calibrationless classi?cation and adaptability to sub-optimal subject data and low-volume EEG electrode arrangements

    On Tackling Fundamental Constraints in Brain-Computer Interface Decoding via Deep Neural Networks

    Get PDF
    A Brain-Computer Interface (BCI) is a system that provides a communication and control medium between human cortical signals and external devices, with the primary aim to assist or to be used by patients who suffer from a neuromuscular disease. Despite significant recent progress in the area of BCI, there are numerous shortcomings associated with decoding Electroencephalography-based BCI signals in real-world environments. These include, but are not limited to, the cumbersome nature of the equipment, complications in collecting large quantities of real-world data, the rigid experimentation protocol and the challenges of accurate signal decoding, especially in making a system work in real-time. Hence, the core purpose of this work is to investigate improving the applicability and usability of BCI systems, whilst preserving signal decoding accuracy. Recent advances in Deep Neural Networks (DNN) provide the possibility for signal processing to automatically learn the best representation of a signal, contributing to improved performance even with a noisy input signal. Subsequently, this thesis focuses on the use of novel DNN-based approaches for tackling some of the key underlying constraints within the area of BCI. For example, recent technological improvements in acquisition hardware have made it possible to eliminate the pre-existing rigid experimentation procedure, albeit resulting in noisier signal capture. However, through the use of a DNN-based model, it is possible to preserve the accuracy of the predictions from the decoded signals. Moreover, this research demonstrates that by leveraging DNN-based image and signal understanding, it is feasible to facilitate real-time BCI applications in a natural environment. Additionally, the capability of DNN to generate realistic synthetic data is shown to be a potential solution in reducing the requirement for costly data collection. Work is also performed in addressing the well-known issues regarding subject bias in BCI models by generating data with reduced subject-specific features. The overall contribution of this thesis is to address the key fundamental limitations of BCI systems. This includes the unyielding traditional experimentation procedure, the mandatory extended calibration stage and sustaining accurate signal decoding in real-time. These limitations lead to a fragile BCI system that is demanding to use and only suited for deployment in a controlled laboratory. Overall contributions of this research aim to improve the robustness of BCI systems and enable new applications for use in the real-world

    Data Analytics in Steady-State Visual Evoked Potential-based Brain-Computer Interface: A Review

    Get PDF
    Electroencephalograph (EEG) has been widely applied for brain-computer interface (BCI) which enables paralyzed people to directly communicate with and control of external devices, due to its portability, high temporal resolution, ease of use and low cost. Of various EEG paradigms, steady-state visual evoked potential (SSVEP)-based BCI system which uses multiple visual stimuli (such as LEDs or boxes on a computer screen) flickering at different frequencies has been widely explored in the past decades due to its fast communication rate and high signal-to-noise ratio. In this paper, we review the current research in SSVEP-based BCI, focusing on the data analytics that enables continuous, accurate detection of SSVEPs and thus high information transfer rate. The main technical challenges, including signal pre-processing, spectrum analysis, signal decomposition, spatial filtering in particular canonical correlation analysis and its variations, and classification techniques are described in this paper. Research challenges and opportunities in spontaneous brain activities, mental fatigue, transfer learning as well as hybrid BCI are also discussed

    Adoption of Machine Learning Techniques to Enhance Classification Performance in Reactive Brain-Computer Interfaces

    Get PDF
    This paper proposes the adoption of an innovative algorithm to enhance the performance of highly wearable, reactive Brain-Computer Interfaces (BCIs), which exploit the Steady-State Visually Evoked Potential (SSVEP) paradigm. In particular, a combined time-domain/frequency-domain processing is performed in order to reduce the number of features of the brain signals acquired. Successively, these features are classified by means of an Artificial Neural Network (ANN) with a learnable activation function. In this way, the user intention can be translated into commands for external devices. The proposed algorithm was initially tested on a benchmark data set, composed by 35 subjects and 40 simultaneous flickering stimuli, obtaining performance comparable with the state of the art. Successively, the algorithm was also applied to a data set realized with highly wearable BCI equipment. In particular, (i) Augmented Reality (AR) smart glasses were used to generate the flickering stimuli necessary to the SSVEPs elicitation, and (ii) a single-channel EEG acquisition was conducted for each volunteer. The obtained results showed that the proposed strategy provides a significant enhancement in SSVEPs classification with respect to other state-of-the-art algorithms. This can contribute to improve reliability and usability of brain computer interfaces, thus favoring the adoption of this technology also in daily-life applications
    • …
    corecore