1,949 research outputs found

    EAGLE 2006 – Multi-purpose, multi-angle and multi-sensor in-situ and airborne campaigns over grassland and forest

    Get PDF
    EAGLE2006 - an intensive field campaign - was carried out in the Netherlands from the 8th until the 18th of June 2006. Several airborne sensors - an optical imaging sensor, an imaging microwave radiometer, and a flux airplane – were used and extensive ground measurements were conducted over one grassland (Cabauw) site and two forest sites (Loobos & Speulderbos) in the central part of the Netherlands, in addition to the acquisition of multi-angle and multi-sensor satellite data. The data set is both unique and urgently needed for the development and validation of models and inversion algorithms for quantitative surface parameter estimation and process studies. EAGLE2006 was led by the Department of Water Resources of the International Institute for Geo-Information Science and Earth Observation and originated from the combination of a number of initiatives coming under different funding. The objectives of the EAGLE2006 campaign were closely related to the objectives of other ESA Campaigns (SPARC2004, Sen2Flex2005 and especially AGRISAR2006). However, one important objective of the campaign is to build up a data base for the investigation and validation of the retrieval of bio-geophysical parameters, obtained at different radar frequencies (X-, C- and L-Band) and at hyperspectral optical and thermal bands acquired over vegetated fields (forest and grassland). As such, all activities were related to algorithm development for future satellite missions such as Sentinels and for satellite validations for MERIS, MODIS as well as AATSR and ASTER thermal data validation, with activities also related to the ASAR sensor on board ESA’s Envisat platform and those on EPS/MetOp and SMOS. Most of the activities in the campaign are highly relevant for the EU GEMS EAGLE project, but also issues related to retrieval of biophysical parameters from MERIS and MODIS as well as AATSR and ASTER data were of particular relevance to the NWO-SRON EcoRTM project, while scaling issues and complementary between these (covering only local sites) and global sensors such as MERIS/SEVIRI, EPS/MetOP and SMOS were also key elements for the SMOS cal/val project and the ESA-MOST DRAGON programme. This contribution describes the mission objectives and provides an overview of the airborne and field campaigns

    Assessing the utility of geospatial technologies to investigate environmental change within lake systems

    Get PDF
    Over 50% of the world's population live within 3. km of rivers and lakes highlighting the on-going importance of freshwater resources to human health and societal well-being. Whilst covering c. 3.5% of the Earth's non-glaciated land mass, trends in the environmental quality of the world's standing waters (natural lakes and reservoirs) are poorly understood, at least in comparison with rivers, and so evaluation of their current condition and sensitivity to change are global priorities. Here it is argued that a geospatial approach harnessing existing global datasets, along with new generation remote sensing products, offers the basis to characterise trajectories of change in lake properties e.g., water quality, physical structure, hydrological regime and ecological behaviour. This approach furthermore provides the evidence base to understand the relative importance of climatic forcing and/or changing catchment processes, e.g. land cover and soil moisture data, which coupled with climate data provide the basis to model regional water balance and runoff estimates over time. Using examples derived primarily from the Danube Basin but also other parts of the World, we demonstrate the power of the approach and its utility to assess the sensitivity of lake systems to environmental change, and hence better manage these key resources in the future

    Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat Series

    Get PDF
    Land Surface Temperature (LST) is increasingly important for various studies assessing land surface conditions, e.g., studies of urban climate, evapotranspiration, and vegetation stress. The Landsat series of satellites have the potential to provide LST estimates at a high spatial resolution, which is particularly appropriate for local or small-scale studies. Numerous studies have proposed LST retrieval algorithms for the Landsat series, and some datasets are available online. However, those datasets generally require the users to be able to handle large volumes of data. Google Earth Engine (GEE) is an online platform created to allow remote sensing users to easily perform big data analyses without increasing the demand for local computing resources. However, high spatial resolution LST datasets are currently not available in GEE. Here we provide a code repository that allows computing LSTs from Landsat 4, 5, 7, and 8 within GEE. The code may be used freely by users for computing Landsat LST as part of any analysis within GEE

    Downscaling landsat land surface temperature over the urban area of Florence

    Get PDF
    A new downscaling algorithm for land surface temperature (LST) images retrieved from Landsat Thematic Mapper (TM) was developed over the city of Florence and the results assessed against a high-resolution aerial image. The Landsat TM thermal band has a spatial resolution of 120 m, resampled at 30 m by the US Geological Survey (USGS) agency, whilst the airborne ground spatial resolution was 1 m. Substantial differences between Landsat USGS and airborne thermal data were observed on a 30 m grid: therefore a new statistical downscaling method at 30 m was developed. The overall root mean square error with respect to aircraft data improved from 3.3 °C (USGS) to 3.0 °C with the new method, that also showed better results with respect to other regressive downscaling techniques frequently used in literature. Such improvements can be ascribed to the selection of independent variables capable of representing the heterogeneous urban landscape

    Retrieving Soil and Vegetation Temperatures From Dual-Angle and Multipixel Satellite Observations

    Get PDF
    Land surface component temperatures (LSCTs), i.e., the temperatures of soil and vegetation, are important parameters in many applications, such as estimating evapotranspiration and monitoring droughts. However, the multiangle algorithm is affected due to different spatial resolution between nadir and oblique views. Therefore, we propose a combined retrieval algorithm that uses dual-angle and multipixel observations together. The sea and land surface temperature radiometer onboard ESA\u27s Sentinel-3 satellite allows for quasi-synchronous dual-angle observations, from which LSCTs can be retrieved using dual-angle and multipixel algorithms. The better performance of the combined algorithm is demonstrated using a sensitivity analysis based on a synthetic dataset. The spatial errors in the oblique view due to different spatial resolution can reach 4.5 K and have a large effect on the multiangle algorithm. The introduction of multipixel information in a window can reduce the effect of such spatial errors, and the retrieval results of LSCTs can be further improved by using multiangle information for a pixel. In the validation, the proposed combined algorithm performed better, with LSCT root mean squared errors of 3.09 K and 1.91 K for soil and vegetation at a grass site, respectively, and corresponding values of 3.71 K and 3.42 K at a sparse forest site, respectively. Considering that the temperature differences between components can reach 20 K, the results confirm that, in addition to a pixel-average LST, the combined retrieval algorithm can provide information on LSCTs. This article demonstrates the potential of utilizing additional information sources for better LSCT results, which makes the presented combined strategy a promising option for deriving large-scale LSCT products

    A global long-term (1981–2000) land surface temperature product for NOAA AVHRR

    Get PDF
    Land surface temperature (LST) plays an important role in the research of climate change and various land surface processes. Before 2000, global LST products with relatively high temporal and spatial resolutions are scarce, despite a variety of operational satellite LST products. In this study, a global 0.05∘×0.05∘ historical LST product is generated from NOAA advanced very-high-resolution radiometer (AVHRR) data (1981–2000), which includes three data layers: (1) instantaneous LST, a product generated by integrating several split-window algorithms with a random forest (RF-SWA); (2) orbital-drift-corrected (ODC) LST, a drift-corrected version of RF-SWA LST; and (3) monthly averages of ODC LST. For an assumed maximum uncertainty in emissivity and column water vapor content of 0.04 and 1.0 g cm−2, respectively, evaluated against the simulation dataset, the RF-SWA method has a mean bias error (MBE) of less than 0.10 K and a standard deviation (SD) of 1.10 K. To compensate for the influence of orbital drift on LST, the retrieved RF-SWA LST was normalized with an improved ODC method. The RF-SWA LST were validated with in situ LST from Surface Radiation Budget (SURFRAD) sites and water temperatures obtained from the National Data Buoy Center (NDBC). Against the in situ LST, the RF-SWA LST has a MBE of 0.03 K with a range of −1.59–2.71 K, and SD is 1.18 K with a range of 0.84–2.76 K. Since water temperature only changes slowly, the validation of ODC LST was limited to SURFRAD sites, for which the MBE is 0.54 K with a range of −1.05 to 3.01 K and SD is 3.57 K with a range of 2.34 to 3.69 K, indicating good product accuracy. As global historical datasets, the new AVHRR LST products are useful for filling the gaps in long-term LST data. Furthermore, the new LST products can be used as input to related land surface models and environmental applications. Furthermore, in support of the scientific research community, the datasets are freely available at https://doi.org/10.5281/zenodo.3934354 for RF-SWA LST (Ma et al., 2020a), https://doi.org/10.5281/zenodo.3936627 for ODC LST (Ma et al., 2020c), and https://doi.org/10.5281/zenodo.3936641 for monthly averaged LST (Ma et al., 2020b)

    A review of geothermal mapping techniques using remotely sensed data

    Get PDF
    Exploiting geothermal (GT) resources requires first and foremost locating suitable areas for its development. Remote sensing offers a synoptic capability of covering large areas in real time and can cost effectively explore prospective geothermal sites not easily detectable using conventional survey methods, thus can aid in the prefeasibility stages of geothermal exploration. In this paper, we evaluate the techniques and approaches used in literature for the detection of prospective geothermal sites. Observations have indicated that, while thermal temperature anomalies detection have been applicable in areas of magmatic episodes and volcanic activity, poor resolution especially from space borne data is still a challenge. Consequently, thermal anomalies have been detected with some degree of success using airborne data, however, this is mostly in locations of known surface manifestations such as hot springs and fumaroles. The indirect identification of indicator minerals related to geothermal systems have been applied using multispectral and hyperspectral data in many studies. However, the effectiveness of the techniques relies on the sophistication and innovative digital image processing methods employed to sieve out relevant spectral information. The use of algorithms to estimate land surface temperature and heat fluxes are also applied to aid thermal anomaly detection, nevertheless, remote sensing techniques are still complementary to geologic, geophysical and geochemical survey methods. While not the first of its kind, this review is aimed at identifying new developments, with a focus on the trends and limitations intrinsic to the techniques and a look at current gaps and prospects for the future.Keywords: Geothermal, remote sensing, thermal anomalies, indicator minerals, multispectral, hyperspectra

    Remote Sensing Monitoring of Land Surface Temperature (LST)

    Get PDF
    This book is a collection of recent developments, methodologies, calibration and validation techniques, and applications of thermal remote sensing data and derived products from UAV-based, aerial, and satellite remote sensing. A set of 15 papers written by a total of 70 authors was selected for this book. The published papers cover a wide range of topics, which can be classified in five groups: algorithms, calibration and validation techniques, improvements in long-term consistency in satellite LST, downscaling of LST, and LST applications and land surface emissivity research

    Investigation and validation of algorithms for estimating land surface temperature from Sentinel-3 SLSTR data

    Get PDF
    Land surface temperature (LST) is an important indicator of global ecological environment and climate change. The Sea and Land Surface Temperature Radiometer (SLSTR) onboard the recently launched Sentinel-3 satellites provides high-quality observations for estimating global LST. The algorithm of the official SLSTR LST product is a split-window algorithm (SWA) that implicitly assumes and utilizes knowledge of land surface emissivity (LSE). The main objective of this study is to investigate alternative SLSTR LST retrieval algorithms with an explicit use of LSE. Seventeen widely accepted SWAs, which explicitly utilize LSE, were selected as candidate algorithms. First, the SWAs were trained using a comprehensive global simulation dataset. Then, using simulation data as well as in-situ LST, the SWAs were evaluated according to their sensitivity and accuracy: eleven algorithms showed good training accuracy and nine of them exhibited low sensitivity to uncertainties in LSE and column water vapor content. Evaluation based on two global simulation datasets and a regional simulation dataset showed that these nine SWAs had similar accuracy with negligible systematic errors and RMSEs lower than 1.0 K. Validation based on in-situ LST obtained for six sites further confirmed the similar accuracies of the SWAs, with the lowest RMSE ranges of 1.57–1.62 K and 0.49−0.61 K for Gobabeb and Lake Constance, respectively. While the best two SWAs usually yielded good accuracy, the official SLSTR LST generally had lower accuracy. The SWAs identified and described in this study may serve as alternative algorithms for retrieving LST products from SLSTR data

    Comparison and Evaluation of the TES and ANEM Algorithms for Land Surface Temperature and Emissivity Separation over the Area of Valencia, Spain

    Get PDF
    Land Surface temperature (LST) is a key magnitude for numerous studies, especially for climatology and assessment of energy fluxes between surface and atmosphere. Retrieval of accurate LST requires a good characterization of surface emissivity. Both quantities are coupled in a single radiance measurement; for this reason, for N spectral bands available in a remote sensor, there will always be N + 1 unknowns. To solve the indeterminacy, temperature-emissivity separation methods have been proposed, among which the Temperature Emissivity Separation (TES) algorithm is one of the most widely used. The Adjusted Normalized Emissivity Method (ANEM) was proposed as a modification of the Normalized Emissivity Method (NEM) algorithm by adjusting the initial emissivity guess using an estimation provided by the Vegetation Cover Method (VCM). In this work, both methods were applied to a set of five ASTER scenes over the area of Valencia, Spain, which were recalibrated and atmospherically corrected using local radiosoundings and ground measurements. These scenes were compared to the ASTER temperature and emissivity standard products (AST08 and AST05, respectively). The comparison to reference measurements showed a better agreement of ANEM LST in low spectral contrast surfaces, with biases of +0.4 K, +0.8 K for TES and +1.4 K for the AST08 product in a rice crop site. For sea surface temperature, bias was −0.1 K for ANEM, +0.3 K for TES and +1.3 K for the AST08 product. The larger differences of the AST08 product could be ascribed mainly to the atmospheric correction based on NCEP profiles in contrast to the local correction used in TES and ANEM and to a lesser extent the Maximum-Minimum Difference (MMD) empirical relationship used by TES. In terms of emissivity, ANEM obtained biases up to ±0.007 (positive over vegetation and negative over water), while TES biases were up to −0.015. The AST05 product showed differences up to −0.050, although for high contrast areas, such as sand surfaces, it showed better accuracy than both TES and ANEM. A comparison between TES and ANEM on four different classes within the scene showed a systematic difference between both algorithms, which was more pronounced for low spectral contrast surfaces. Therefore, ANEM improves the accuracy at low spectral contrast surfaces, while obtaining similar results to TES at higher spectral contrast surfaces, such as urban areas. The combination of both methods could provide a procedure benefiting from the strengths shown by each of them
    corecore