39 research outputs found

    Detection of REM Sleep Behaviour Disorder by Automated Polysomnography Analysis

    Full text link
    Evidence suggests Rapid-Eye-Movement (REM) Sleep Behaviour Disorder (RBD) is an early predictor of Parkinson's disease. This study proposes a fully-automated framework for RBD detection consisting of automated sleep staging followed by RBD identification. Analysis was assessed using a limited polysomnography montage from 53 participants with RBD and 53 age-matched healthy controls. Sleep stage classification was achieved using a Random Forest (RF) classifier and 156 features extracted from electroencephalogram (EEG), electrooculogram (EOG) and electromyogram (EMG) channels. For RBD detection, a RF classifier was trained combining established techniques to quantify muscle atonia with additional features that incorporate sleep architecture and the EMG fractal exponent. Automated multi-state sleep staging achieved a 0.62 Cohen's Kappa score. RBD detection accuracy improved by 10% to 96% (compared to individual established metrics) when using manually annotated sleep staging. Accuracy remained high (92%) when using automated sleep staging. This study outperforms established metrics and demonstrates that incorporating sleep architecture and sleep stage transitions can benefit RBD detection. This study also achieved automated sleep staging with a level of accuracy comparable to manual annotation. This study validates a tractable, fully-automated, and sensitive pipeline for RBD identification that could be translated to wearable take-home technology.Comment: 20 pages, 3 figure

    Single-channel EEG classification of sleep stages based on REM microstructure

    Get PDF
    Rapid-eye movement (REM) sleep, or paradoxical sleep, accounts for 20–25% of total night-time sleep in healthy adults and may be related, in pathological cases, to parasomnias. A large percentage of Parkinson's disease patients suffer from sleep disorders, including REM sleep behaviour disorder and hypokinesia; monitoring their sleep cycle and related activities would help to improve their quality of life. There is a need to accurately classify REM and the other stages of sleep in order to properly identify and monitor parasomnias. This study proposes a method for the identification of REM sleep from raw single-channel electroencephalogram data, employing novel features based on REM microstructures. Sleep stage classification was performed by means of random forest (RF) classifier, K-nearest neighbour (K-NN) classifier and random Under sampling boosted trees (RUSBoost); the classifiers were trained using a set of published and novel features. REM detection accuracy ranges from 89% to 92.7%, and the classifiers achieved a F-1 score (REM class) of about 0.83 (RF), 0.80 (K-NN), and 0.70 (RUSBoost). These methods provide encouraging outcomes in automatic sleep scoring and REM detection based on raw single-channel electroencephalogram, assessing the feasibility of a home sleep monitoring device with fewer channels

    Characterization of early and mature electrophysiological biomarkers of patients with Parkinson’s disease

    Get PDF

    U-Time: A Fully Convolutional Network for Time Series Segmentation Applied to Sleep Staging

    Full text link
    Neural networks are becoming more and more popular for the analysis of physiological time-series. The most successful deep learning systems in this domain combine convolutional and recurrent layers to extract useful features to model temporal relations. Unfortunately, these recurrent models are difficult to tune and optimize. In our experience, they often require task-specific modifications, which makes them challenging to use for non-experts. We propose U-Time, a fully feed-forward deep learning approach to physiological time series segmentation developed for the analysis of sleep data. U-Time is a temporal fully convolutional network based on the U-Net architecture that was originally proposed for image segmentation. U-Time maps sequential inputs of arbitrary length to sequences of class labels on a freely chosen temporal scale. This is done by implicitly classifying every individual time-point of the input signal and aggregating these classifications over fixed intervals to form the final predictions. We evaluated U-Time for sleep stage classification on a large collection of sleep electroencephalography (EEG) datasets. In all cases, we found that U-Time reaches or outperforms current state-of-the-art deep learning models while being much more robust in the training process and without requiring architecture or hyperparameter adaptation across tasks.Comment: To appear in Advances in Neural Information Processing Systems (NeurIPS), 201

    Deep learning for automated sleep monitoring

    Get PDF
    Wearable electroencephalography (EEG) is a technology that is revolutionising the longitudinal monitoring of neurological and mental disorders, improving the quality of life of patients and accelerating the relevant research. As sleep disorders and other conditions related to sleep quality affect a large part of the population, monitoring sleep at home, over extended periods of time could have significant impact on the quality of life of people who suffer from these conditions. Annotating the sleep architecture of patients, known as sleep stage scoring, is an expensive and time-consuming process that cannot scale to a large number of people. Using wearable EEG and automating sleep stage scoring is a potential solution to this problem. In this thesis, we propose and evaluate two deep learning algorithms for automated sleep stage scoring using a single channel of EEG. In our first method, we use time-frequency analysis for extracting features that closely follow the guidelines that human experts follow, combined with an ensemble of stacked sparse autoencoders as our classification algorithm. In our second method, we propose a convolutional neural network (CNN) architecture for automatically learning filters that are specific to the problem of sleep stage scoring. We achieved state-of-the-art results (mean F1-score 84%; range 82-86%) with our first method and comparably good results with the second (mean F1-score 81%; range 79-83%). Both our methods effectively account for the skewed performance that is usually found in the literature due to sleep stage duration imbalance. We propose a filter analysis and visualisation methodology for CNNs to understand the filters that CNNs learn. Our results indicate that our CNN was able to robustly learn filters that closely follow the sleep scoring guidelines.Open Acces

    A review of automated sleep disorder detection

    Get PDF
    Automated sleep disorder detection is challenging because physiological symptoms can vary widely. These variations make it difficult to create effective sleep disorder detection models which support hu-man experts during diagnosis and treatment monitoring. From 2010 to 2021, authors of 95 scientific papers have taken up the challenge of automating sleep disorder detection. This paper provides an expert review of this work. We investigated whether digital technology and Artificial Intelligence (AI) can provide automated diagnosis support for sleep disorders. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines during the content discovery phase. We compared the performance of proposed sleep disorder detection methods, involving differ-ent datasets or signals. During the review, we found eight sleep disorders, of which sleep apnea and insomnia were the most studied. These disorders can be diagnosed using several kinds of biomedical signals, such as Electrocardiogram (ECG), Polysomnography (PSG), Electroencephalogram (EEG), Electromyogram (EMG), and snore sound. Subsequently, we established areas of commonality and distinctiveness. Common to all reviewed papers was that AI models were trained and tested with labelled physiological signals. Looking deeper, we discovered that 24 distinct algorithms were used for the detection task. The nature of these algorithms evolved, before 2017 only traditional Machine Learning (ML) was used. From 2018 onward, both ML and Deep Learning (DL) methods were used for sleep disorder detection. The strong emergence of DL algorithms has considerable implications for future detection systems because these algorithms demand significantly more data for training and testing when compared with ML. Based on our review results, we suggest that both type and amount of labelled data is crucial for the design of future sleep disorder detection systems because this will steer the choice of AI algorithm which establishes the desired decision support. As a guiding principle, more labelled data will help to represent the variations in symptoms. DL algorithms can extract information from these larger data quantities more effectively, therefore; we predict that the role of these algorithms will continue to expand

    A Time Series Approach to Parkinson's Disease Classification from EEG

    Full text link
    Firstly, we present a novel representation for EEG data, a 7-variate series of band power coefficients, which enables the use of (previously inaccessible) time series classification methods. Specifically, we implement the multi-resolution representation-based time series classification method MrSQL. This is deployed on a challenging early-stage Parkinson's dataset that includes wakeful and sleep EEG. Initial results are promising with over 90% accuracy achieved on all EEG data types used. Secondly, we present a framework that enables high-importance data types and brain regions for classification to be identified. Using our framework, we find that, across different EEG data types, it is the Prefrontal brain region that has the most predictive power for the presence of Parkinson's Disease. This outperformance was statistically significant versus ten of the twelve other brain regions (not significant versus adjacent Left Frontal and Right Frontal regions). The Prefrontal region of the brain is important for higher-order cognitive processes and our results align with studies that have shown neural dysfunction in the prefrontal cortex in Parkinson's Disease

    Low-complexity algorithms for automatic detection of sleep stages and events for use in wearable EEG systems

    Get PDF
    Objective: Diagnosis of sleep disorders is an expensive procedure that requires performing a sleep study, known as polysomnography (PSG), in a controlled environment. This study monitors the neural, eye and muscle activity of a patient using electroencephalogram (EEG), electrooculogram (EOG) and electromyogram (EMG) signals which are then scored in to different sleep stages. Home PSG is often cited as an alternative of clinical PSG to make it more accessible, however it still requires patients to use a cumbersome system with multiple recording channels that need to be precisely placed. This thesis proposes a wearable sleep staging system using a single channel of EEG. For realisation of such a system, this thesis presents novel features for REM sleep detection from EEG (normally detected using EMG/EOG), a low-complexity automatic sleep staging algorithm using a single EEG channel and its complete integrated circuit implementation. Methods: The difference between Spectral Edge Frequencies (SEF) at 95% and 50% in the 8-16 Hz frequency band is shown to have high discriminatory ability for detecting REM sleep stages. This feature, together with other spectral features from single-channel EEG are used with a set of decision trees controlled by a state machine for classification. The hardware for the complete algorithm is designed using low-power techniques and implemented on chip using 0.18ÎĽm process node technology. Results: The use of SEF features from one channel of EEG resulted in 83% of REM sleep epochs being correctly detected. The automatic sleep staging algorithm, based on contextually aware decision trees, resulted in an accuracy of up to 79% on a large dataset. Its hardware implementation, which is also the very first complete circuit level implementation of any sleep staging algorithm, resulted in an accuracy of 98.7% with great potential for use in fully wearable sleep systems.Open Acces
    corecore