3,499 research outputs found

    Self-Interference Cancellation Using Time-Domain Phase Noise Estimation in OFDM Full-Duplex Systems

    Full text link
    In full-duplex systems, oscillator phase noise (PN) problem is considered the bottleneck challenge that may face the self-interference cancellation (SIC) stage especially when orthogonal frequency division multiplexing (OFDM) transmission scheme is deployed. Phase noise degrades the SIC performance significantly, if not mitigated before or during the SIC technique. The presence of the oscillator phase noise has different impacts on the transmitted data symbol like common phase error (CPE) and inter-carrier interference (ICI). However, phase noise can be estimated and mitigated digitally in either time or frequency domain. Through this work, we propose a novel and simple time domain self-interference (SI) phase noise estimation and mitigation technique. The proposed algorithm is inspired from Wiener filtering in time domain. Simulation results show that the proposed algorithm has a superior performance than the already-existing time-domain or frequency domain PN mitigation solutions with a noticeable reduction in the computational complexity

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER

    An assessment of interference cancellation applied to BWA

    Get PDF

    A scheme for cancelling intercarrier interference using conjugate transmission in multicarrier communication systems

    Get PDF
    To mitigate intercarrier interference (ICI), a two-path algorithm is developed for multicarrier communication systems, including orthogonal frequency division multiplexing (OFDM) systems. The first path employs the regular OFDM algorithm. The second path uses the conjugate transmission of the first path. The combination of both paths forms a conjugate ICI cancellation scheme at the receiver. This conjugate cancellation (CC) scheme provides (1) a high signal to interference power ratio (SIR) in the presence of small frequency offsets (50 dB and 33 dB higher than that of the regular OFDM and linear self-cancellation algorithms [1], [2], respectively, at Ξ”fT = 0.1% of subcarrier frequency spacing); (2) better bit error rate (BER) performance in both additive white Gaussian noise (AWGN) and fading channels; (3) backward compatibility with the existing OFDM system; (4) no channel equalization is needed for reducing ICI, a simple low cost receiver without increasing system complexity. Although the two-path transmission reduces bandwidth efficiency, the disadvantage can be balanced by increasing signal alphabet sizes

    Multiuser MIMO-OFDM for Next-Generation Wireless Systems

    No full text
    This overview portrays the 40-year evolution of orthogonal frequency division multiplexing (OFDM) research. The amelioration of powerful multicarrier OFDM arrangements with multiple-input multiple-output (MIMO) systems has numerous benefits, which are detailed in this treatise. We continue by highlighting the limitations of conventional detection and channel estimation techniques designed for multiuser MIMO OFDM systems in the so-called rank-deficient scenarios, where the number of users supported or the number of transmit antennas employed exceeds the number of receiver antennas. This is often encountered in practice, unless we limit the number of users granted access in the base station’s or radio port’s coverage area. Following a historical perspective on the associated design problems and their state-of-the-art solutions, the second half of this treatise details a range of classic multiuser detectors (MUDs) designed for MIMO-OFDM systems and characterizes their achievable performance. A further section aims for identifying novel cutting-edge genetic algorithm (GA)-aided detector solutions, which have found numerous applications in wireless communications in recent years. In an effort to stimulate the cross pollination of ideas across the machine learning, optimization, signal processing, and wireless communications research communities, we will review the broadly applicable principles of various GA-assisted optimization techniques, which were recently proposed also for employment inmultiuser MIMO OFDM. In order to stimulate new research, we demonstrate that the family of GA-aided MUDs is capable of achieving a near-optimum performance at the cost of a significantly lower computational complexity than that imposed by their optimum maximum-likelihood (ML) MUD aided counterparts. The paper is concluded by outlining a range of future research options that may find their way into next-generation wireless systems
    • …
    corecore