916 research outputs found

    Quantum Simulations of Relativistic Quantum Physics in Circuit QED

    Get PDF
    We present a scheme for simulating relativistic quantum physics in circuit quantum electrodynamics. By using three classical microwave drives, we show that a superconducting qubit strongly-coupled to a resonator field mode can be used to simulate the dynamics of the Dirac equation and Klein paradox in all regimes. Using the same setup we also propose the implementation of the Foldy-Wouthuysen canonical transformation, after which the time derivative of the position operator becomes a constant of the motion.Comment: 13 pages, 3 figure

    Resolving Phonon Fock States in a Multimode Cavity with a Double-Slit Qubit

    Full text link
    We resolve phonon number states in the spectrum of a superconducting qubit coupled to a multimode acoustic cavity. Crucial to this resolution is the sharp frequency dependence in the qubit-phonon interaction engineered by coupling the qubit to surface acoustic waves in two locations separated by ∼40\sim40 acoustic wavelengths. In analogy to double-slit diffraction, the resulting self-interference generates high-contrast frequency structure in the qubit-phonon interaction. We observe this frequency structure both in the coupling rate to multiple cavity modes and in the qubit spontaneous emission rate into unconfined modes. We use this sharp frequency structure to resolve single phonons by tuning the qubit to a frequency of destructive interference where all acoustic interactions are dispersive. By exciting several detuned yet strongly-coupled phononic modes and measuring the resulting qubit spectrum, we observe that, for two modes, the device enters the strong dispersive regime where single phonons are spectrally resolved.Comment: 9 pages, 8 figures; revised arguments in paragraphs 3 and 8, added Hamiltonian description, and corrected typo

    Engineering Dynamical Sweet Spots to Protect Qubits from 1/ff Noise

    Full text link
    Protecting superconducting qubits from low-frequency noise is essential for advancing superconducting quantum computation. Based on the application of a periodic drive field, we develop a protocol for engineering dynamical sweet spots which reduce the susceptibility of a qubit to low-frequency noise. Using the framework of Floquet theory, we prove rigorously that there are manifolds of dynamical sweet spots marked by extrema in the quasi-energy differences of the driven qubit. In particular, for the example of fluxonium biased slightly away from half a flux quantum, we predict an enhancement of pure-dephasing by three orders of magnitude. Employing the Floquet eigenstates as the computational basis, we show that high-fidelity single- and two-qubit gates can be implemented while maintaining dynamical sweet-spot operation. We further confirm that qubit readout can be performed by adiabatically mapping the Floquet states back to the static qubit states, and subsequently applying standard measurement techniques. Our work provides an intuitive tool to encode quantum information in robust, time-dependent states, and may be extended to alternative architectures for quantum information processing
    • …
    corecore