445,877 research outputs found

    Learning to Translate in Real-time with Neural Machine Translation

    Get PDF
    Translating in real-time, a.k.a. simultaneous translation, outputs translation words before the input sentence ends, which is a challenging problem for conventional machine translation methods. We propose a neural machine translation (NMT) framework for simultaneous translation in which an agent learns to make decisions on when to translate from the interaction with a pre-trained NMT environment. To trade off quality and delay, we extensively explore various targets for delay and design a method for beam-search applicable in the simultaneous MT setting. Experiments against state-of-the-art baselines on two language pairs demonstrate the efficacy of the proposed framework both quantitatively and qualitatively.Comment: 10 pages, camera read

    Metaheuristic algorithms for the simultaneous slot allocation problem

    Get PDF
    In this paper, we formalize the simultaneous slot allocation problem. It is an extension of the problem currently tackled for allocating airport slots: it deals with all airports simultaneously and it enforces the respect of airspace sector capacities. By solving this novel problem, the system may overcome some major inefficiencies that characterize the current slot allocation process. We tackle the simultaneous slot allocation problem with two algorithms based on metaheuristics, namely Iterated Local Search and Variable Neighborhood Search, and with an integer linear programming model: for each of these three algorithms, we allow a fixed computation time, and we take the best solution found during that time as the final solution. We compare these algorithms on randomly generated instances, and we show that, when small instances are to be tackled, metaheuristics are competitive with the exact model. When medium or large instances are to be tackled, the exact model suffers some major issues in terms of memory and computation time requirements. Metaheuristics, instead, can deal with very large instances, achieving very high quality results.Air Traffic Management; Airport slot allocation; Metaheuristics; Integer linear programming

    Stationary Multi Choice Bandit Problems

    Get PDF
    This note shows that the optimal choice of k simultaneous experiments in a stationary multi-armed bandit problem can be characterized in terms of the Gittins index of each arm. The index characterization remains equally valid after the introduction of switching costs.multi-armed bandits, Gittins index, Stationary bandits, Job search

    Complexity and Bounded Rationality in Individual Decision Problems

    Get PDF
    I develop a model of endogenous bounded rationality due to search costs, arising implicitly from the decision problem's complexity. The decision maker is not required to know the entire structure of the problem when making choices. She can think ahead, through costly search, to reveal more of its details. However, the costs of search are not assumed exogenously; they are inferred from revealed preferences through choices. Thus, bounded rationality and its extent emerge endogenously: as problems become simpler or as the benefits of deeper search become larger relative to its costs, the choices more closely resemble those of a rational agent. For a fixed decision problem, the costs of search will vary across agents. For a given decision maker, they will vary across problems. The model explains, therefore, why the disparity, between observed choices and those prescribed under rationality, varies across agents and problems. It also suggests, under reasonable assumptions, an identifying prediction: a relation between the benefits of deeper search and the depth of the search. In decision problems with structure that allows the optimal foresight of search to be revealed from choices of plans of action, the relation can be tested on any agent-problem pair, rendering the model falsifiable. Moreover, the relation can be estimated allowing the model to make predictions with respect to how, in a given problem, changes in the terminal payoffs affect the depth of search and, consequently, choices. My approach provides a common framework for depicting the underlying limitations that force departures from rationality in different and unrelated decision-making situations. I show that it is consistent with violations of timing-independence in temporal framing problems, dynamic inconsistency and diversification bias in sequential versus simultaneous choice problems, and with plausible but contrasting risk attitudes across small- and large-stakes gambles.bounded rationality, complexity, search

    Simultaneous Perturbation Algorithms for Batch Off-Policy Search

    Full text link
    We propose novel policy search algorithms in the context of off-policy, batch mode reinforcement learning (RL) with continuous state and action spaces. Given a batch collection of trajectories, we perform off-line policy evaluation using an algorithm similar to that by [Fonteneau et al., 2010]. Using this Monte-Carlo like policy evaluator, we perform policy search in a class of parameterized policies. We propose both first order policy gradient and second order policy Newton algorithms. All our algorithms incorporate simultaneous perturbation estimates for the gradient as well as the Hessian of the cost-to-go vector, since the latter is unknown and only biased estimates are available. We demonstrate their practicality on a simple 1-dimensional continuous state space problem

    Cryptanalysis of protocols using (Simultaneous) Conjugacy Search Problem in certain Metabelian Platform Groups

    Full text link
    There are many group-based cryptosystems in which the security relies on the difficulty of solving Conjugacy Search Problem (CSP) and Simultaneous Conjugacy Search Problem (SCSP) in their underlying platform groups. In this paper we give a cryptanalysis of these systems which use certain semidirect product of abelian groups
    • …
    corecore