565 research outputs found

    Validation of a Sensorized Instrument-Based Training System for Minimally Invasive Surgery

    Get PDF
    Minimally invasive surgery training is complicated by the restraints imposed by the surgical environment. A sensorized laparoscopic instrument capable of sensing force in 5 degrees of freedom and position in 6 degrees of freedom was evaluated. Novice and Expert laparoscopists performed a complex minimally invasive surgical task - suturing - using the novel instruments. Their force and position profiles were compared. The novel minimally invasive surgical instrument is construct-valid and capable of detecting differences between novices and experts in a laparoscopic suturing task with respect to force and position. It is also concurrently valid with an existing standard: the Fundamentals of Laparoscopic Skills. Further evaluation is mandated to better understand the ability to predict performance based on force and position as well as the potential for new metrics in minimally invasive surgical education

    A Sensorized Instrument for Minimally Invasive Surgery for the Measurement of Forces during Training and Surgery: Development and Applications

    Get PDF
    The reduced access conditions present in Minimally Invasive Surgery (MIS) affect the feel of interaction forces between the instruments and the tissue being treated. This loss of haptic information compromises the safety of the procedure and must be overcome through training. Haptics in MIS is the subject of extensive research, focused on establishing force feedback mechanisms and developing appropriate sensors. This latter task is complicated by the need to place the sensors as close as possible to the instrument tip, as the measurement of forces outside of the patient\u27s body does not represent the true tool--tissue interaction. Many force sensors have been proposed, but none are yet available for surgery. The objectives of this thesis were to develop a set of instruments capable of measuring tool--tissue force information in MIS, and to evaluate the usefulness of force information during surgery and for training and skills assessment. To address these objectives, a set of laparoscopic instruments was developed that can measure instrument position and tool--tissue interaction forces in multiple degrees of freedom. Different design iterations and the work performed towards the development of a sterilizable instrument are presented. Several experiments were performed using these instruments to establish the usefulness of force information in surgery and training. The results showed that the combination of force and position information can be used in the development of realistic tissue models or haptic interfaces specifically designed for MIS. This information is also valuable in order to create tactile maps to assist in the identification of areas of different stiffness. The real-time measurement of forces allows visual force feedback to be presented to the surgeon. When applied to training scenarios, the results show that experience level correlates better with force-based metrics than those currently used in training simulators. The proposed metrics can be automatically computed, are completely objective, and measure important aspects of performance. The primary contribution of this thesis is the design and development of highly versatile instruments capable of measuring force and position during surgery. A second contribution establishes the importance and usefulness of force data during skills assessment, training and surgery

    Skills Assessment in Arthroscopic Surgery by Processing Kinematic, Force, and Bio-signal Data

    Get PDF
    Arthroscopic surgery is a type of Minimally Invasive Surgery (MIS) performed in human joints, which can be used for diagnostic or treatment purposes. The nature of this type of surgery makes it such that surgeons require extensive training to become experts at performing surgical tasks in tight environments and with reduced force feedback. MIS increases the possibility of erroneous actions, which could result in injury to the patient. Many of these injuries can be prevented by implementing appropriate training and skills assessment methods. Various performance methods, including Global Rating Scales and technical measures, have been proposed in the literature. However, there is still a need to further improve the accuracy of surgical skills assessment and improve its ability to distinguish fine variations in surgical proficiency. The main goal of this thesis is to enhance surgical, and specifically, arthroscopic skills assessment. The optimal assessment method should be objective, distinguish between subjects with different levels of expertise, and be computationally efficient. This thesis proposes a new method of investigating surgical skills by introducing energy expenditure metrics. To this end, two main approaches are pursued: 1) evaluating the kinematics of instrument motion, and 2) exploring the muscle activity of trainees. Mechanical energy expenditure and work are investigated for a variety of laparoscopic and arthroscopic tasks. The results obtained in this thesis demonstrate that expert surgeons expend less energy than novice trainees. The different forms of mechanical energy expenditure were combined through optimization methods and machine learning algorithms. An optimum two-step optimization method for classifying trainees into detailed levels of expertise is proposed that demonstrates an enhanced ability to determine the level of expertise of trainees compared to other published methods. Furthermore, performance metrics are proposed based on electromyography signals of the forearm muscles, which are recorded using a wearable device. These results also demonstrate that the metrics defined based on muscle activity can be used for arthroscopic skills assessment. The energy-based metrics and the muscle activity metrics demonstrated the ability to identify levels of expertise, with accuracy levels as high as 95% and 100%, respectively. The primary contribution of this thesis is the development of novel metrics and assessment methods based on energy expenditure and muscle activity. The methods presented advance our knowledge of the characteristics of dexterous performance and add another perspective to quantifying surgical proficiency

    Human factors tools for improving simulation activities in continuing medical education

    Full text link
    Human factors (HF) is a discipline often drawn upon when there is a need to train people to perform complex, high‐stakes tasks and effectively assess their performance. Complex tasks often present unique challenges for training and assessment. HF has developed specialized techniques that have been effective in overcoming several of these challenges in work settings such as aviation, process control, and the military. Many HF techniques could be applied to simulation in continuing medical education to enhance effectiveness of simulation and training, yet these techniques are not widely known by medical educators. Three HF techniques are described that could benefit health care simulation in areas of training techniques, assessment, and task design: (1) bandwidth feedback techniques for designing better feedback and task guidance, (2) dual‐task assessment techniques that can differentiate levels of expertise in tasks where performance is essentially perfect, and (3) task abstraction techniques for developing task‐relevant fidelity for simulations. Examples of each technique are given from work settings in which these principles have been applied successfully. Application of these principles to medical simulation and medical education is discussed. Adapting these techniques to health care could improve training in medical education.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95199/1/21154_ftp.pd

    Haptics-Enabled Teleoperation for Robotics-Assisted Minimally Invasive Surgery

    Get PDF
    The lack of force feedback (haptics) in robotic surgery can be considered to be a safety risk leading to accidental tissue damage and puncturing of blood vessels due to excessive forces being applied to tissue and vessels or causing inefficient control over the instruments because of insufficient applied force. This project focuses on providing a satisfactory solution for introducing haptic feedback in robotics-assisted minimally invasive surgical (RAMIS) systems. The research addresses several key issues associated with the incorporation of haptics in a master-slave (teleoperated) robotic environment for minimally invasive surgery (MIS). In this project, we designed a haptics-enabled dual-arm (two masters - two slaves) robotic MIS testbed to investigate and validate various single-arm as well as dual-arm teleoperation scenarios. The most important feature of this setup is the capability of providing haptic feedback in all 7 degrees of freedom (DOF) required for RAMIS (3 translations, 3 rotations and pinch motion of the laparoscopic tool). The setup also enables the evaluation of the effect of replacing haptic feedback by other sensory cues such as visual representation of haptic information (sensory substitution) and the hypothesis that surgical outcomes may be improved by substituting or augmenting haptic feedback by such sensory cues

    A cadaver‑based biomechanical model of acetabulum reaming for surgical virtual reality training simulators

    Get PDF
    Total hip arthroplasty (THA) is a highly successful surgical procedure, but complications remain, including aseptic loosening, early dislocation and misalignment. These may partly be related to lacking training opportunities for novices or those performing THA less frequently. A standardized training setting with realistic haptic feedback for THA does not exist to date. Virtual Reality (VR) may help establish THA training scenarios under standardized settings, morphology and material properties. This work summarizes the development and acquisition of mechanical properties on hip reaming, resulting in a tissue-based material model of the acetabulum for force feedback VR hip reaming simulators. With the given forces and torques occurring during the reaming, Cubic Hermite Spline interpolation seemed the most suitable approach to represent the nonlinear forcedisplacement behavior of the acetabular tissues over Cubic Splines. Further, Cubic Hermite Splines allowed for a rapid force feedback computation below the 1 ms hallmark. The Cubic Hermite Spline material model was implemented using a three-dimensional-sphere packing model. The resulting forces were delivered via a human–machine-interaction certified KUKA iiwa robotic arm used as a force feedback device. Consequently, this novel approach presents a concept to obtain mechanical data from high-force surgical interventions as baseline data for material models and biomechanical considerations; this will allow THA surgeons to train with a variety of machining hardness levels of acetabula for haptic VR acetabulum reaming

    Motor learning induced neuroplasticity in minimally invasive surgery

    Get PDF
    Technical skills in surgery have become more complex and challenging to acquire since the introduction of technological aids, particularly in the arena of Minimally Invasive Surgery. Additional challenges posed by reforms to surgical careers and increased public scrutiny, have propelled identification of methods to assess and acquire MIS technical skills. Although validated objective assessments have been developed to assess motor skills requisite for MIS, they poorly understand the development of expertise. Motor skills learning, is indirectly observable, an internal process leading to relative permanent changes in the central nervous system. Advances in functional neuroimaging permit direct interrogation of evolving patterns of brain function associated with motor learning due to the property of neuroplasticity and has been used on surgeons to identify the neural correlates for technical skills acquisition and the impact of new technology. However significant gaps exist in understanding neuroplasticity underlying learning complex bimanual MIS skills. In this thesis the available evidence on applying functional neuroimaging towards assessment and enhancing operative performance in the field of surgery has been synthesized. The purpose of this thesis was to evaluate frontal lobe neuroplasticity associated with learning a complex bimanual MIS skill using functional near-infrared spectroscopy an indirect neuroimaging technique. Laparoscopic suturing and knot-tying a technically challenging bimanual skill is selected to demonstrate learning related reorganisation of cortical behaviour within the frontal lobe by shifts in activation from the prefrontal cortex (PFC) subserving attention to primary and secondary motor centres (premotor cortex, supplementary motor area and primary motor cortex) in which motor sequences are encoded and executed. In the cross-sectional study, participants of varying expertise demonstrate frontal lobe neuroplasticity commensurate with motor learning. The longitudinal study involves tracking evolution in cortical behaviour of novices in response to receipt of eight hours distributed training over a fortnight. Despite novices achieving expert like performance and stabilisation on the technical task, this study demonstrates that novices displayed persistent PFC activity. This study establishes for complex bimanual tasks, that improvements in technical performance do not accompany a reduced reliance in attention to support performance. Finally, least-squares support vector machine is used to classify expertise based on frontal lobe functional connectivity. Findings of this thesis demonstrate the value of interrogating cortical behaviour towards assessing MIS skills development and credentialing.Open Acces

    Arthroscopic Simulation: The Future of Surgical Training: A Systematic Review.

    Get PDF
    BACKGROUND: Arthroscopic simulation has rapidly evolved recently with the introduction of higher-fidelity simulation models, such as virtual reality simulators, which provide trainees an environment to practice skills without causing undue harm to patients. Simulation training also offers a uniform approach to learn surgical skills with immediate feedback. The aim of this article is to review the recent research investigating the use of arthroscopy simulators in training and the teaching of surgical skills. METHODS: A systematic review of the Embase, MEDLINE, and Cochrane Library databases for English-language articles published before December 2019 was conducted. The search terms included arthroscopy or arthroscopic in combination with simulation or simulator. RESULTS: We identified a total of 44 relevant studies involving benchtop or virtually simulated ankle, knee, shoulder, and hip arthroscopy environments. The majority of these studies demonstrated construct and transfer validity; considerably fewer studies demonstrated content and face validity. CONCLUSIONS: Our review indicates that there is a considerable evidence base regarding the use of arthroscopy simulators for training purposes. Further work should focus on the development of a more uniform simulator training course that can be compared with current intraoperative training in large-scale trials with long-term follow-up at tertiary centers
    • 

    corecore