378 research outputs found

    Haptic feedback in teleoperation in Micro-and Nano-Worlds.

    No full text
    International audienceRobotic systems have been developed to handle very small objects, but their use remains complex and necessitates long-duration training. Simulators, such as molecular simulators, can provide access to large amounts of raw data, but only highly trained users can interpret the results of such systems. Haptic feedback in teleoperation, which provides force-feedback to an operator, appears to be a promising solution for interaction with such systems, as it allows intuitiveness and flexibility. However several issues arise while implementing teleoperation schemes at the micro-nanoscale, owing to complex force-fields that must be transmitted to users, and scaling differences between the haptic device and the manipulated objects. Major advances in such technology have been made in recent years. This chapter reviews the main systems in this area and highlights how some fundamental issues in teleoperation for micro- and nano-scale applications have been addressed. The chapter considers three types of teleoperation, including: (1) direct (manipulation of real objects); (2) virtual (use of simulators); and (3) augmented (combining real robotic systems and simulators). Remaining issues that must be addressed for further advances in teleoperation for micro-nanoworlds are also discussed, including: (1) comprehension of phenomena that dictate very small object (< 500 micrometers) behavior; and (2) design of intuitive 3-D manipulation systems. Design guidelines to realize an intuitive haptic feedback teleoperation system at the micro-nanoscale level are proposed

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 320)

    Get PDF
    This bibliography lists 125 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during January, 1989. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Asynchronous displays for multi-UV search tasks

    Get PDF
    Synchronous video has long been the preferred mode for controlling remote robots with other modes such as asynchronous control only used when unavoidable as in the case of interplanetary robotics. We identify two basic problems for controlling multiple robots using synchronous displays: operator overload and information fusion. Synchronous displays from multiple robots can easily overwhelm an operator who must search video for targets. If targets are plentiful, the operator will likely miss targets that enter and leave unattended views while dealing with others that were noticed. The related fusion problem arises because robots' multiple fields of view may overlap forcing the operator to reconcile different views from different perspectives and form an awareness of the environment by "piecing them together". We have conducted a series of experiments investigating the suitability of asynchronous displays for multi-UV search. Our first experiments involved static panoramas in which operators selected locations at which robots halted and panned their camera to capture a record of what could be seen from that location. A subsequent experiment investigated the hypothesis that the relative performance of the panoramic display would improve as the number of robots was increased causing greater overload and fusion problems. In a subsequent Image Queue system we used automated path planning and also automated the selection of imagery for presentation by choosing a greedy selection of non-overlapping views. A fourth set of experiments used the SUAVE display, an asynchronous variant of the picture-in-picture technique for video from multiple UAVs. The panoramic displays which addressed only the overload problem led to performance similar to synchronous video while the Image Queue and SUAVE displays which addressed fusion as well led to improved performance on a number of measures. In this paper we will review our experiences in designing and testing asynchronous displays and discuss challenges to their use including tracking dynamic targets. © 2012 by the American Institute of Aeronautics and Astronautics, Inc

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 344)

    Get PDF
    This bibliography lists 125 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during January, 1989. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Increasing Transparency and Presence of Teleoperation Systems Through Human-Centered Design

    Get PDF
    Teleoperation allows a human to control a robot to perform dexterous tasks in remote, dangerous, or unreachable environments. A perfect teleoperation system would enable the operator to complete such tasks at least as easily as if he or she was to complete them by hand. This ideal teleoperator must be perceptually transparent, meaning that the interface appears to be nearly nonexistent to the operator, allowing him or her to focus solely on the task environment, rather than on the teleoperation system itself. Furthermore, the ideal teleoperation system must give the operator a high sense of presence, meaning that the operator feels as though he or she is physically immersed in the remote task environment. This dissertation seeks to improve the transparency and presence of robot-arm-based teleoperation systems through a human-centered design approach, specifically by leveraging scientific knowledge about the human motor and sensory systems. First, this dissertation aims to improve the forward (efferent) teleoperation control channel, which carries information from the human operator to the robot. The traditional method of calculating the desired position of the robot\u27s hand simply scales the measured position of the human\u27s hand. This commonly used motion mapping erroneously assumes that the human\u27s produced motion identically matches his or her intended movement. Given that humans make systematic directional errors when moving the hand under conditions similar to those imposed by teleoperation, I propose a new paradigm of data-driven human-robot motion mappings for teleoperation. The mappings are determined by having the human operator mimic the target robot as it autonomously moves its arm through a variety of trajectories in the horizontal plane. Three data-driven motion mapping models are described and evaluated for their ability to correct for the systematic motion errors made in the mimicking task. Individually-fit and population-fit versions of the most promising motion mapping model are then tested in a teleoperation system that allows the operator to control a virtual robot. Results of a user study involving nine subjects indicate that the newly developed motion mapping model significantly increases the transparency of the teleoperation system. Second, this dissertation seeks to improve the feedback (afferent) teleoperation control channel, which carries information from the robot to the human operator. We aim to improve a teleoperation system a teleoperation system by providing the operator with multiple novel modalities of haptic (touch-based) feedback. We describe the design and control of a wearable haptic device that provides kinesthetic grip-force feedback through a geared DC motor and tactile fingertip-contact-and-pressure and high-frequency acceleration feedback through a pair of voice-coil actuators mounted at the tips of the thumb and index finger. Each included haptic feedback modality is known to be fundamental to direct task completion and can be implemented without great cost or complexity. A user study involving thirty subjects investigated how these three modalities of haptic feedback affect an operator\u27s ability to control a real remote robot in a teleoperated pick-and-place task. This study\u27s results strongly support the utility of grip-force and high-frequency acceleration feedback in teleoperation systems and show more mixed effects of fingertip-contact-and-pressure feedback

    The Shape of Damping: Optimizing Damping Coefficients to Improve Transparency on Bilateral Telemanipulation

    Get PDF
    This thesis presents a novel optimization-based passivity control algorithm for hapticenabled bilateral teleoperation systems involving multiple degrees of freedom. In particular, in the context of energy-bounding control, the contribution focuses on the implementation of a passivity layer for an existing time-domain scheme, ensuring optimal transparency of the interaction along subsets of the environment space which are preponderant for the given task, while preserving the energy bounds required for passivity. The involved optimization problem is convex and amenable to real-time implementation. The effectiveness of the proposed design is validated via an experiment performed on a virtual teleoperated environment. The interplay between transparency and stability is a critical aspect in haptic-enabled bilateral teleoperation control. While it is important to present the user with the true impedance of the environment, destabilizing factors such as time delays, stiff environments, and a relaxed grasp on the master device may compromise the stability and safety of the system. Passivity has been exploited as one of the the main tools for providing sufficient conditions for stable teleoperation in several controller design approaches, such as the scattering algorithm, timedomain passivity control, energy bounding algorithm, and passive set position modulation. In this work it is presented an innovative energy-based approach, which builds upon existing time-domain passivity controllers, improving and extending their effectiveness and functionality. The set of damping coefficients are prioritized in each degree of freedom, the resulting transparency presents a realistic force feedback in comparison to the other directions. Thus, the prioritization takes effect using a quadratic programming algorithm to find the optimal values for the damping. Finally, the energy tanks approach on passivity control is a solution used to ensure stability in a system for robotics bilateral manipulation. The bilateral telemanipulation must maintain the principle of passivity in all moments to preserve the system\u2019s stability. This work presents a brief introduction to haptic devices as a master component on the telemanipulation chain; the end effector in the slave side is a representation of an interactive object within an environment having a force sensor as feedback signal. The whole interface is designed into a cross-platform framework named ROS, where the user interacts with the system. Experimental results are presented

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures

    Force reflecting joystick control for applications to bilateral teleoperation in construction machinery

    Get PDF
    This paper presents a simple and effective force reflecting joystick controller for applications to bilateral teleoperation in construction machinery. First, this controller is a combination of an advanced force reflecting gain tuner and two local adaptive controllers, master and slave. Second, the force reflecting gain tuner is effectively designed using recursive least square method and fuzzy logics to estimate directly and accurately the environmental characteristics and, consequently, to produce properly a force reflection. Third, the local adaptive controllers are simply designed using fuzzy technique and optimized using a smart leaning mechanism to ensure that the slave follows well any given trajectory while the operator is able to achieve truly physical perception of interactions at the remote site. An experimental master-slave manipulator is setup and real-time control tests are carried out under various environmental conditions to evaluate the effectiveness of the proposed controller

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 382)

    Get PDF
    This bibliography lists 119 reports, articles, and other documents recently introduced into the NASA Scientific and Technical Information System. Subject coverage includes the following: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance
    corecore