51 research outputs found

    Advanced Transport Protocols for Wireless and Mobile Ad Hoc Networks

    Full text link
    This thesis comprises transport protocols in the following different areas of research: Fast Handover allows mobile IP end-devices to roam between wireless access routers without interruptions while communicating to devices in an infrastructure (e.g., in the Internet). This work optimizes the Fast Handover algorithm and evaluates the performance of the transport protocols UDP and TCP during fast handovers via measurements. The following part of the thesis focuses on vehicular ad hoc networks. The thesis designs and evaluates through simulations a point-to-point transport protocol for vehicular ad hoc networks and an algorithm to facilitate the reliable and efficient distribution of information in a geographically scoped target area. Finally, the thesis evaluates the impact of wireless radio fluctuations on the performance of an Ad Hoc Network. Measurements quantify the wireless radio fluctuations. Based on these results, the thesis develops a simple but realistic radio model that evaluates by means of simulations the impact on the performance of an ad hoc network. As a result, the work provides guidelines for future ad hoc protocol design

    MANETs: Internet Connectivity and Transport Protocols

    Get PDF
    A Mobile Ad hoc Network (MANET) is a collection of mobile nodes connected together over a wireless medium, which self-organize into an autonomous multi-hop wireless network. This kind of networks allows people and devices to seamlessly internetwork in areas with no pre-existing communication infrastructure, e.g., disaster recovery environments. Ad hoc networking is not a new concept, having been around in various forms for over 20 years. However, in the past only tactical networks followed the ad hoc networking paradigm. Recently, the introduction of new technologies such as IEEE 802.11, are moved the application field of MANETs to a more commercial field. These evolutions have been generating a renewed and growing interest in the research and development of MANETs. It is widely recognized that a prerequisite for the commercial penetration of the ad hoc networking technologies is the integration with existing wired/wireless infrastructure-based networks to provide an easy and transparent access to the Internet and its services. However, most of the existing solutions for enabling the interconnection between MANETs and the Internet are based on complex and inefficient mechanisms, as Mobile-IP and IP tunnelling. This thesis describes an alternative approach to build multi-hop and heterogeneous proactive ad hoc networks, which can be used as flexible and low-cost extensions of traditional wired LANs. The proposed architecture provides transparent global Internet connectivity and address autocofiguration capabilities to mobile nodes without requiring configuration changes in the pre-existing wired LAN, and relying on basic layer-2 functionalities. This thesis also includes an experimental evaluation of the proposed architecture and a comparison between this architecture with a well-known alternative NAT-based solution. The experimental outcomes confirm that the proposed technique ensures higher per-connection throughputs than the NAT-based solution. This thesis also examines the problems encountered by TCP over multi-hop ad hoc networks. Research on efficient transport protocols for ad hoc networks is one of the most active topics in the MANET community. Such a great interest is basically motivated by numerous observations showing that, in general, TCP is not able to efficiently deal with the unstable and very dynamic environment provided by multi-hop ad hoc networks. This is because some assumptions, in TCP design, are clearly inspired by the characteristics of wired networks dominant at the time when it was conceived. More specifically, TCP implicitly assumes that packet loss is almost always due to congestion phenomena causing buffer overflows at intermediate routers. Furthermore, it also assumes that nodes are static (i.e., they do not change their position over time). Unfortunately, these assumptions do not hold in MANETs, since in this kind of networks packet losses due to interference and link-layer contentions are largely predominant, and nodes may be mobile. The typical approach to solve these problems is patching TCP to fix its inefficiencies while preserving compatibility with the original protocol. This thesis explores a different approach. Specifically, this thesis presents a new transport protocol (TPA) designed from scratch, and address TCP interoperability at a late design stage. In this way, TPA can include all desired features in a neat and coherent way. This thesis also includes an experimental, as well as, a simulative evaluation of TPA, and a comparison between TCP and TPA performance (in terms of throughput, number of unnecessary transmissions and fairness). The presented analysis considers several of possible configurations of the protocols parameters, different routing protocols, and various networking scenarios. In all the cases taken into consideration TPA significantly outperforms TCP

    IEEE 802.21 in heterogeneous handover environments

    Get PDF
    Mestrado em Engenharia de Computadores e TelemáticaO desenvolvimento das capacidades tecnológicas dos terminais móveis, e das infra-estruturas que os suportam, potenciam novos cenários onde estes dispositivos munidos com interfaces de diferentes tecnologias vagueiam entre diferentes ambientes de conectividade. É assim necessário providenciar meios que facilitem a gestão de mobilidade, permitindo ao terminal ligar-se da melhor forma (i.e., optando pela melhor tecnologia) em qualquer altura. A norma IEEE 802.21 está a ser desenvolvida pelo Institute of Electrical and Electronics Engineers (IEEE) com o intuito de providenciar mecanismos e serviços que facilitem e optimizem handovers de forma independente da tecnologia. A norma 802.21 especifica assim um conjunto de mecanismos que potenciarão cenários como o descrito acima, tendo em conta a motivação e requerimentos apresentados por arquitecturas de redes futuras, como as redes de quarta geração (4G). Esta dissertação apresenta uma análise extensiva da norma IEEE 802.21, introduzindo um conjunto de simulações desenvolvidas para estudar o impacto da utilização de mecanismos 802.21 em handovers controlados por rede, numa rede de acesso mista composta por tecnologias 802.11 e 3G. Os resultados obtidos permitiram verificar a aplicabilidade destes conceitos a ambientes de próxima geração, motivando também uma descrição do desenho de integração de mecanismos 802.21 a arquitecturas de redes de quarta geração. ABSTRACT: The development of the technological capabilities of mobile terminals, and the infra-structures that support them, enable new scenarios where these devices using different technology interfaces roam in different connectivity environments. This creates a need for providing the means that facilitate mobility management, allowing the terminal to connect in the best way possible (i.e., by choosing the best technology) at any time. The IEEE 802.21 standard is being developed by the Institute of Electrical and Electronics Engineers (IEEE) to provide mechanisms and services supporting Media Independent Handovers. The 802.21 standard specifies a set of mechanisms that enable scenarios like the one described above, considering the motivation and requirements presented by future network architectures, such as the ones from fourth generation networks (4G). This thesis presents an extensive analysis of the IEEE 802.21 standard, introducing a set of simulations developed for studying the impact of using 802.21 mechanisms in network controlled handovers, in a mixed access network composed of 802.11 and 3G technologies. The obtained results allow the verification of the applicability of these concepts into next generation environments, also motivating the description of the design for integration of 802.21 mechanisms to fourth generation networks

    Hybrid routing in delay tolerant networks

    Get PDF
    This work addresses the integration of today\\u27s infrastructure-based networks with infrastructure-less networks. The resulting Hybrid Routing System allows for communication over both network types and can help to overcome cost, communication, and overload problems. Mobility aspect resulting from infrastructure-less networks are analyzed and analytical models developed. For development and deployment of the Hybrid Routing System an overlay-based framework is presented

    Hybrid Routing in Delay Tolerant Networks

    Get PDF
    This work addresses the integration of today\u27s infrastructure-based networks with infrastructure-less networks. The resulting Hybrid Routing System allows for communication over both network types and can help to overcome cost, communication, and overload problems. Mobility aspect resulting from infrastructure-less networks are analyzed and analytical models developed. For development and deployment of the Hybrid Routing System an overlay-based framework is presented

    Multi-layer traffic control for wireless networks

    Get PDF
    Le reti Wireless LAN, così come definite dallo standard IEEE 802.11, garantiscono connettività senza fili nei cosiddetti “hot-spot” (aeroporti, hotel, etc.), nei campus universitari, nelle intranet aziendali e nelle abitazioni. In tali scenari, le WLAN sono denotate come “ad infrastruttura” nel senso che la copertura della rete è basata sulla presenza di un “Access Point” che fornisce alle stazioni mobili l’accesso alla rete cablata. Esiste un ulteriore approccio (chiamato “ad-hoc”) in cui le stazioni mobili appartenenti alla WLAN comunicano tra di loro senza l’ausilio dell’Access Point. Le Wireless LAN tipicamente sono connesse alla rete di trasporto (che essa sia Internet o una Intranet aziendale) usando un’infrastruttura cablata. Le reti wireless Mesh ad infrastruttura (WIMN) rappresentano un’alternativa valida e meno costosa alla classica infrastruttura cablata. A testimonianza di quanto appena affermato vi è la comparsa e la crescita sul mercato di diverse aziende specializzate nella fornitura di infrastrutture di trasporto wireless e il lancio di varie attività di standardizzazione (tra cui spicca il gruppo 802.11s). La facilità di utilizzo, di messa in opera di una rete wireless e i costi veramente ridotti hanno rappresentato fattori critici per lo straordinario successo di tale tecnologia. Di conseguenza possiamo affermare che la tecnologia wireless ha modificato lo stile di vita degli utenti, il modo di lavorare, il modo di passare il tempo libero (video conferenze, scambio foto, condivisione di brani musicali, giochi in rete, messaggistica istantanea ecc.). D’altro canto, lo sforzo per garantire lo sviluppo di reti capaci di supportare servizi dati ubiqui a velocità di trasferimento elevate è strettamente legato a numerose sfide tecniche tra cui: il supporto per l’handover tra differenti tecnologie (WLAN/3G), la certezza di accesso e autenticazione sicure, la fatturazione e l’accounting unificati, la garanzia di QoS ecc. L’attività di ricerca svolta nell’arco del Dottorato si è focalizzata sulla definizione di meccanismi multi-layer per il controllo del traffico in reti wireless. In particolare, nuove soluzioni di controllo del traffico sono state realizzate a differenti livelli della pila protocollare (dallo strato data-link allo strato applicativo) in modo da fornire: funzionalità avanzate (autenticazione sicura, differenziazione di servizio, handover trasparente) e livelli soddisfacenti di Qualità del Servizio. La maggior parte delle soluzioni proposte in questo lavoro di tesi sono state implementate in test-bed reali. Questo lavoro riporta i risultati della mia attività di ricerca ed è organizzato nel seguente modo: ogni capitolo presenta, ad uno specifico strato della pila protocollare, un meccanismo di controllo del traffico con l’obiettivo di risolvere le problematiche presentate precedentemente. I Capitoli 1 e 2 fanno riferimento allo strato di Trasporto ed investigano il problema del mantenimento della fairness per le connessioni TCP. L’unfairness TCP conduce ad una significativa degradazione delle performance implicando livelli non soddisfacenti di QoS. Questi capitoli descrivono l’attività di ricerca in cui ho impiegato il maggior impegno durante gli studi del dottorato. Nel capitolo 1 viene presentato uno studio simulativo delle problematiche di unfairness TCP e vengono introdotti due possibili soluzioni basate su rate-control. Nel Capitolo 2 viene derivato un modello analitico per la fairness TCP e si propone uno strumento per la personalizzazione delle politiche di fairness. Il capitolo 3 si focalizza sullo strato Applicativo e riporta diverse soluzioni di controllo del traffico in grado di garantire autenticazione sicura in scenari di roaming tra provider wireless. Queste soluzioni rappresentano parte integrante del framework UniWireless, un testbed nazionale sviluppato nell’ambito del progetto TWELVE. Il capitolo 4 descrive, nuovamente a strato Applicativo, una soluzione (basata su SIP) per la gestione della mobilità degli utenti in scenari di rete eterogenei ovvero quando diverse tecnologie di accesso radio sono presenti (802.11/WiFi, Bluetooth, 2.5G/3G). Infine il Capitolo 5 fa riferimento allo strato Data-Link presentando uno studio preliminare di un approccio per il routing e il load-balancing in reti Mesh infrastrutturate.Wireless LANs, as they have been defined by the IEEE 802.11 standard, are shared media enabling connectivity in the so-called “hot-spots” (airports, hotel lounges, etc.), university campuses, enterprise intranets, as well as “in-home” for home internet access. With reference to the above scenarios, WLANs are commonly denoted as “infra-structured” in the sense that WLAN coverage is based on “Access Points” which provide the mobile stations with access to the wired network. In addition to this approach, there exists also an “ad-hoc” mode to organize WLANs where mobile stations talk to each other without the need of Access Points. Wireless LANs are typically connected to the wired backbones (Internet or corporate intranets) using a wired infrastructure. Wireless Infrastructure Mesh Networks (WIMN) may represent a viable and cost-effective alternative to this traditional wired approach. This is witnessed by the emergence and growth of many companies specialized in the provisioning of wireless infrastructure solutions, as well as the launch of standardization activities (such as 802.11s). The easiness of deploying and using a wireless network, and the low deployment costs have been critical factors in the extraordinary success of such technology. As a logical consequence, the wireless technology has allowed end users being connected everywhere – every time and it has changed several things in people’s lifestyle, such as the way people work, or how they live their leisure time (videoconferencing, instant photo or music sharing, network gaming, etc.). On the other side, the effort to develop networks capable of supporting ubiquitous data services with very high data rates in strategic locations is linked with many technical challenges including seamless vertical handovers across WLAN and 3G radio technologies, security, 3G-based authentication, unified accounting and billing, consistent QoS and service provisioning, etc. My PhD research activity have been focused on multi-layer traffic control for Wireless LANs. In particular, specific new traffic control solutions have been designed at different layers of the protocol stack (from the link layer to the application layer) in order to guarantee i) advanced features (secure authentication, service differentiation, seamless handover) and ii) satisfactory level of perceived QoS. Most of the proposed solutions have been also implemented in real testbeds. This dissertation presents the results of my research activity and is organized as follows: each Chapter presents, at a specific layer of the protocol stack, a traffic control mechanism in order to address the introduced above issues. Chapter 1 and Charter 2 refer to the Transport Layer, and they investigate the problem of maintaining fairness for TCP connections. TCP unfairness may result in significant degradation of performance leading to users perceiving unsatisfactory Quality of Service. These Chapters describe the research activity in which I spent the most significant effort. Chapter 1 proposes a simulative study of the TCP fairness issues and two different solutions based on Rate Control mechanism. Chapter 2 illustrates an analytical model of the TCP fairness and derives a framework allowing wireless network providers to customize fairness policies. Chapter 3 focuses on the Application Layer and it presents new traffic control solutions able to guarantee secure authentication in wireless inter-provider roaming scenarios. These solutions are an integral part of the UniWireless framework, a nationwide distributed Open Access testbed that has been jointly realized by different research units within the TWELVE national project. Chapter 4 describes again an Application Layer solution, based on Session Initiation Protocol to manage user mobility and provide seamless mobile multimedia services in a heterogeneous scenario where different radio access technologies are used (802.11/WiFi, Bluetooth, 2.5G/3G networks). Finally Chapter 5 refers to the Data Link Layer and presents a preliminary study of a general approach for routing and load balancing in Wireless Infrastructure Mesh Network. The key idea is to dynamically select routes among a set of slowly changing alternative network paths, where paths are created through the reuse of classical 802.1Q multiple spanning tree mechanisms

    QoS-aware Mobility Management in IP-based Communication Networks

    Get PDF
    Der allgegenwärtige Zugang zu Informationen, jederzeit und überall, ist ein wichtiges Merkmal künftiger All-IP-Mobilfunktnetze, die verschiedene Systeme miteinander verbinden, dabei dynamischer und flexibler sein werden. Der Einsatz dieser Netze erfordert es jedoch, viele Herausforderungen zu überwinden. Eine der wichtigsten im Rahmen dieser Arbeit, ist die Frage, wie Quality of Service (QoS) Eigenschaften in solchen hoch dynamischen, mobilen Umgebungen zu garantieren sind. Bekanntermaßen beeinflusst die Mobilität von Mobilknoten (MN) die Dienstgüte in mobilen Netzen, da QoS-Parameters für die Ende-zu-Ende-Kommunikation vereinbart werden. Daher müssen Lösungen entwickelt werden, die nahtlose Mobilität, bei gleichzeitigen QoS-Garantien nach Handoffs, unterstützen. Diese Herausforderung ist das Hauptziel der vorliegenden Dissertation, die einen umfassenden Überblick über die bestehenden Mobilitäts- und QoS-Managment-Lösungen in IP-basierten Netzen liefert, gefolgt von einem Einblick in Methoden zur Kopplung von Mobilitätsmanagement und QoS-Lösungen. Nach Betrachtung der Vor- und Nachteile bestehender Ansätze, kommt die Dissertation zu dem Schluss, dass hybride Strategien vielversprechend sind und zu praktikablen Lösungen weiterentwickelt werden können, die sowohl Mobilitäts- als auch QoS-Anforderungen auf effiziente Weise,in allen zukünftigen IP-Mobilfunknetzen erfüllen können. Auf dieser Grundlage schlägt die Dissertation ein neues Hybrid-Protokoll, genannt "QoS-aware Mobile IP Fast Authentication Protocol" (QoMIFA), vor. Unser Vorschlag integriert MIFA als Mobilitäts-Management-Protokoll mit RSVP als QoS Reservierungsprotokoll. MI-FA wird aufgrund seiner Fähigkeit zu schnellen, sicheren und robusten Handoffs gewählt. RSVP hingegen dient als Standardlösung zur Bereitstellung von QoS in bestehenden IP-basierten Netzen. Unter Einhaltung der Hybrid-Architektur wird RSVP um ein neues Objekt, genannt "Mobility Object" erweitert, welches MIFA-Kontrollnachrichten kapselt. Nach der Spezifikation des neuen Vorschlags, bewertet die Dissertation auch seine Leistung im Vergleich zu dem bekannten "Simple QoS Signaling Protocol" (Simple QoS), mittels Simulationsstudien, modelliert mit dem "Network Simluator 2" (NS2). In der Auswertung werden der Einflusses der Netzwerklast und der Geschwindigkeit des Mobilknotens untersucht. Die hierzu verwendeten Leistungsparameter umfassen die Ressourcen-Reservierungs-Latenz, die Anzahl verlorener Pakete pro Handoff, die Anzahl der, vor Abschluss der Reservierung, mit Best-Effort-Eigenschaften übertragenen Pakete pro Handoff und die Wahrscheinlichkeit von Verbindungsabbrüchen. Unsere mittels Simulation erzielten Ergebnisse zeigen, dass QoMIFA schnelle und nahtlose Handoffs mit schneller Ressourcenreservierung nach Handoffs kombinieren kann. Unter Berücksichtigung des Einflusses der Netzwerklast, ist nachweisbar, dass QoMIFA eine besser Leistung als Simple QoS in allen untersuchten Szenarien mit geringer, mittlerer und hoher Last erreicht. Bei Betrachtung des Einflusses der Bewegungsgeschwindigkeit des Mobilknotens auf die Leistung, lassen sich unter beiden Protokollen Ping-Pong-Effekte beobachten, welche zu höheren Ressourcen-Reservierungs-Latenzen, mehr verlorenen Paketen und mehr Best-Effort-Paketen pro Handoff bei geringeren Geschwindigkeiten führen. Der stärkste Einfluss dieser Pinp-Pong-Effekte ist jeweils bei 3 km/h zu beobachten. Allerdings verhält sich QoMIFA unter allen untersuchten Bewegungsgeschwindigkeiten besser als Simple QoS und kann Mobilknoten auch bei hohen Geschwindigkeiten bedienen. In Anschluss an die simulationsgestützte Evaluierung, schätzt die Dissertation die Signalisierungskosten beider Protokolle unter Betrachtung der Kosten für Ortslokalise-rung und Paketzustellung. Im Ergebnis erreicht QoMIFA die zuvor genannten Leistungsverbesserungen auf Kosten von größeren Ortslokalisierungskosten und leicht höherer Paketzustellungskosten.Ubiquitous access to information anywhere, anytime and anyhow is an important feature of future all-IP mobile communication networks, which will interconnect various systems and be more dynamic and flexible. The deployment of these networks, however, requires overcoming many challenges. One of the main challenges of interest for this work is how to provide Qual-ity of Service (QoS) guarantees in such highly dynamic mobile environments.As known, mobility of Mobile Nodes (MNs) affects the QoS in mobile networks since QoS parameters are made for end-to-end communications. Therefore, it is a challenge to develop new solutions capable of supporting seamless mobility while simultaneously providing QoS guarantees after handoffs. Addressing this challenge is the main objective of this dissertation, which provides a comprehensive overview of mobility management solutions and QoS mech-anisms in IP-based networks followed by an insight into how mobility management and QoS solutions can be coupled with each other. Following the highlight of the state of art along with the pros and cons of existing approaches, the dissertation concludes that hybrid strategies are promising and can be further developed to achieve solutions that are capable of simultaneous-ly supporting mobility and QoS, simple from the implementation point of view, efficient and applicable to future all-IP mobile communication networks.Based on this, the dissertation proposes a new hybrid proposal named QoS-aware Mobile IP Fast Authentication Protocol (QoMIFA). Our proposal integrates MIFA as a mobility man-agement protocol with RSVP as a QoS reservation protocol. MIFA is selected due to its capa-bility of the provision of fast, secure and robust handoffs, while RSVP is chosen because it presents the standard solution used to support QoS in existing IP-based networks. The hybrid architecture is retained by introducing a new object, called “mobility object”, to RSVP in or-der to encapsulate MIFA control messages.Following the specification of the new proposal, the dissertation also evaluates its perfor-mance compared to the well-known Simple QoS signaling protocol (Simple QoS) by means of simulation studies modeled using the Network Simulator 2 (NS2). The evaluation compris-es the investigation of the impact of network load and MN speed. The performance measures we are interested in studying comprise the resource reservation latency, number of dropped packets per handoff, number of packets sent as best-effort per handoff until the reservation is accomplished and probability of dropping sessions. Our simulation results show that QoMIFA is capable of achieving fast and smooth handoffs in addition to its capability of quickly re-serving resources after handoffs. Considering the impact of network load, QoMIFA outper-forms Simple QoS in all studied scenarios (low- , middle- and high-loaded scenarios). With respect to the impact of MN speed, it can be observed that the impact of ping-pong effects is seen with both protocols and results in higher resource reservation latency, more dropped packets per handoff and more best-effort packets per handoff at low speeds than at higher ones. The worst impact of ping-pong effects is seen at a speed of 3 km/h when employing QoMIFA and Simple QoS, respectively. However, QoMIFA remains performing significantly better than Simple QoS under all studied MN speeds and can even properly serve MNs mov-ing at high speeds.Following the simulative evaluation, the dissertation estimates the signaling cost of both stud-ied protocols with respect to the location update and packet delivery cost. Our results show that QoMIFA achieves the above mentioned performance improvements at the cost of greater location update cost and slightly higher packet delivery cost than Simple QoS

    Mobility management in IP-Based Networks

    Get PDF
    Mobile communication networks experience a tremendous development clearly evident from the wide variety of new applications way beyond classical phone services. The tremendous success of the Internet along with the demand for always-on connectivity has triggered the development of All-IP mobile communication networks. Deploying these networks requires, however, overcoming many challenges. One of the main challenges is how to manage the mobility between cells connecting through an IP core in a way that satisfies real-time requirements. This challenge is the focus of this dissertation. This dissertation delivers an in-depth analysis of the mobility management issue in IP-based mobile communication networks. The advantages and disadvantages of various concepts for mobility management in different layers of the TCP/IP protocol stack are investigated. In addition, a classification and brief description of well-known mobility approaches for each layer are provided. The analysis concludes that network layer mobility management solutions seem to be best suited to satisfy the requirements of future All-IP networks. The dissertation, therefore, provides a comprehensive review of network layer mobility management protocols along with a discussion of their pros and cons. Analyses of previous work in this area show that the proposed techniques attempt to improve the performance by making constraints either on access networks (e.g. requiring a hierarchical topology, introducing of intermediate nodes, etc.) or mobile terminals (e.g. undertaking many measurements, location tracking, etc.). Therefore, a new technique is required that completes handoffs quickly without affecting the end-to-end performance of ongoing applications. In addition, it should place restrictions neither on access networks nor on mobiles. To meet these requirements, a new solution named Mobile IP Fast Authentication protocol (MIFA) is proposed. MIFA provides seamless mobility and advances the state of the art. It utilizes the fact that mobiles movements are limited to a small set of neighboring subnets. Thus, contacting these neighbors and providing them in advance with sufficient data related to the mobiles enable them to fast re-authenticate the mobiles after the handoff. The dissertation specifies the proposal for both IPv4 and IPv6. The specification of MIFA considers including many error recovery mechanisms to cover the most likely failures. Security considerations are studied carefully as well. MIFA does not make any restrictions on the network topology. It makes use of layer 2 information to optimize the performance and works well even if such information is not available.In order to analyze our new proposal in comparison to a wide range of well-known mobility management protocols, this dissertation proposes a generic mathematical model that supports the evaluation of figures such as average handoff latency, average number of dropped packets, location update cost and packet delivery cost. The generic model considers dropped control messages and takes different network topologies and mobility scenarios into account. This dissertation also validates the generic mathematical model by comparing its results to simulation results as well as results of real testbeds under the same assumptions. The validation proves that the generic model delivers an accurate evaluation of the performance in low-loaded networks. The accuracy of the model remains acceptable even under high loads. The validation also shows that simulation results lie in a range of 23 %, while results of real testbeds lie in a range of 30 % of the generic model?s results. To simplify the analysis using the generic mathematical model, 4 new tools are developed in the scope of this work. They automate the parameterization of mobility protocols, network topologies and mobility scenarios. This dissertation also evaluates the new proposal in comparison to well-known approaches (e.g. Mobile IP, Handoff-Aware Wireless Access Internet Infrastructure (HAWAII), etc.) by means of the generic mathematical model as well as simulation studies modeled in the Network Simulator 2. The evaluation shows that MIFA is a very fast protocol. It outperforms all studied protocols with respect to the handoff latency and number of dropped packets per handoff. MIFA is suitable for low as well as high speeds. Moreover, there is no significant impact of the network topology on its performance. A main advantage of MIFA is its robustness against the dropping of control messages. It remains able to achieve seamless handoffs even if a dropping occurs. The performance improvement is achieved, however, at the cost of introducing new control messages mainly to distribute data concerning mobile terminals to neighbor subnets. This results in more location update cost than that resulting from the other mobility management protocols studied. Due to excluding any constraints on the network topology, MIFA generates the same packet delivery cost as Mobile IP and less than other protocols.An additional focus of this dissertation is the development of an adaptive eLearning environment that personalizes eLearning contents conveying the topics of this dissertation depending on users? characteristics. The goal is to allow researchers to quickly become involved in research on mobility management, while learners such as students are able to gain information on the topics without excess detail. Analyses of existing eLearning environments show a lack of adaptivity support. Existing environments focus mainly on adapting either the navigation or the presentation of contents depending on one or more selected users? characteristics. There is no environment that supports both simultaneously. In addition, many user characteristics are disregarded during the adaptivity process. Thus, there is a need to develop a new adaptive eLearning environment able to eliminate these drawbacks. This dissertation, therefore, designs a new Metadata-driven Adaptive eLearning Environment (MAeLE). MAeLE generates personalized eLearning courses along with building an adequate navigation at run-time. Adaptivity depends mainly on providing contents with their describing metadata, which are stored in a separate database, thus enabling reusing of eLearning contents. The relation between the metadata that describe contents and those describing learners are defined accurately, which enables a dynamic building of personalized courses at run-time. A prototype for MAeLE is provided in this dissertation as well

    Efficient Multihop Wireless Communications in VANETs

    Get PDF
    Oggigiorno, una quota rilevante dei veicoli presenti sul mercato è dotata di notevoli capacità computazionali, sensoriali e cognitive. Questi veicoli ``intelligenti'' otterrebbero un beneficio ancora maggiore da queste potenzialità, attraverso l'impiego delle cosiddette comunicazioni inter-veicolari (Inter-Vehicular Communications, IVCs), un insieme di protocolli, standard e tecnologie in grado di dotare i veicoli di capacità comunicative. In particolare, grazie alle tecnologie IVCs, i veicoli possono creare reti decentralizzate, ed auto-organizzate, comunemente note come Vehicular Ad-hoc NETworks (VANETs). Quest'ultime possono essere formate, sia fra veicoli, determinando la realizzazione di comunicazioni inter-veicolari pure (Vehicle-to-Vehicle communications, V2V), oppure coinvolgendo anche nodi fissi (ad esempio, posti ai lati delle strade), determinando la realizzazione di comunicazioni da veicolo verso infrastruttura (Vehicle-to-Infrastructure, V2I), o da infrastruttura verso veicolo (Infrastructure-to-Vehicle I2V). In questa tesi presenteremo una famiglia di protocolli di instradamento a passi multipli, adatti per un largo spettro di applicazioni nell'ambito delle VANET, quali la prevenzione di incidenti stradali, o applicazioni di raccolta dati, in scenari di tipo V2V, V2I, o I2V. Il primo protocollo che viene proposto è un nuovo schema di broadcasting probabilistico per reti lineari a passi multipli, noto come Irresponsible Forwarding (IF), secondo il quale ogni veicolo decide probabilisticamente se effettuare la ritrasmissione (broadcast) di un messaggio ricevuto. La probabilità di ritrasmissione è determinata sulla base della propria distanza dalla sorgente e della densità spaziale dei propri vicini. I vantaggi principali del protocollo IF rispetto alle soluzioni presenti in letteratura, sono costituiti dalla sua natura intrinsecamente distribuita, dalla bassa latenza, e dall'assenza di overhead, in quanto esso non prevede l'utilizzo di pacchetti ausiliari di supporto Successivamente, presenteremo un secondo protocollo di instradamento probabilistico, noto come Silencing Irresponsible Forwarding (SIF), che riprendendo le idee alla base di IF, permette di ottenere una maggiore efficienza (e.g., un minore numero di ritrasmissioni), senza penalizzarne l'affidabilità, e mantenendo valori di latenza comparabili ad IF. In seguito, verrà inoltre proposto un protocollo di clustering decentralizzato, noto come Cluster-Head Election IF (CHE-IF). Quest'ultimo si propone di sfruttare lo spontaneo processo di formazione di cluster effimeri di nodi nelle reti veicolari, in maniera distribuita ed efficiente. Per ottenere questo risultato, CHE-IF utilizza l'idea alla base di IF, ma introducendo dei pacchetti di controllo aggiuntivi, espressamente dedicati alla realizzazione di cluster di nodi. Infine, le prestazioni di tutti i protocolli proposti verranno testate mediante simulazioni numeriche in realistici scenari veicolari, quali autostrade e strade urbane, assumendo di utilizzare interfacce radio compatibili con lo standard IEEE 802.11p.Nowadays, most of the vehicles available on the market are provided by sensorial, computational, and cognitive skills. Vehicles can achieve a higher awareness level, by exploiting these potentialities through Inter-Vehicular Communications (IVCs), a set of technologies that gives networking capabilities to the vehicles. Leveraging on the IVC technology, vehicles can create decentralized and self-organized vehicular networks, commonly denoted as Vehicular Ad-hoc NETworks (VANETs). These networks can be formed between vehicles, leading to Vehicle-to-Vehicle communications (V2V), or they can also involve some fixed network nodes (e.g., access points or road side unit) leading to the so-called Vehicle-to-Infrastructure (V2I) and Infrastructure-to-Vehicle (I2V) communications. In this thesis we present a family of multihop broadcast forwarding protocols suitable for a wide range of VANETs applications, ranging from accident-preventing, to data collection applications, in V2V, V2I, or I2V scenarios. The first proposed protocol is a new probabilistic-based broadcasting scheme for multi-hop linear networks, denoted as Irresponsible Forwarding (IF), where each vehicle probabilistically rebroadcasts a received data packet on the basis of (i) its distance from the source and (ii) the spatial density of its neighbors. The main advantages of the IF protocol with respect to solutions present in the literature, are its inherently distributed nature, the low-latency, and the absence of overhead, since auxiliary supporting packets are not needed. On the basis of the IF concept, we will present an improved probabilistic forwarding protocol, denoted as Silencing Irresponsible Forwarding (SIF) protocol, able to guarantee a greater efficiency (e.g., a smaller number of retransmissions), without penalizing the reliability, and maintaining a comparable latency. Furthermore, we will propose a novel decentralized clustering protocol, denoted as Cluster-Head Election IF (CHE-IF), whose goal is which of exploiting the spontaneous formation of ephemeral clusters of vehicles in VANETs, in a distributed and efficient manner. This result is achieved by enhancing IF with some additional control messages, aimed at the creation of cluster of nodes. Finally, the performance of the proposed protocols will be tested through numerical simulations in realistic vehicular environments, such as highways and urban roads, by using radio interfaces compliant with the IEEE 802.11p standard
    corecore