18 research outputs found

    INVESTIGATION OF SURFACE SPUTTERING AND IONIZATION PROCESSES UNDER NON-REACTIVE LIGHT ION IRRADIATION: TOWARDS 4D SIMS IMAGING

    Get PDF
    The progressive trend to miniaturize samples presents a challenge to materials characterization techniques in terms of both lateral resolution and chemical sensitivity. The latest generation of focused ion beam (FIB) platforms has allowed to advance in a variety of different fields, including nanotechnology, geology, soil, and life sciences. State-of-the-art ultra-high resolution electron microscopy (EM) devices coupled with secondary ion mass spectrometry (SIMS) systems have enabled to perform in-situ morphological and chemical imaging of micro- and even nanosized objects to better understand materials by studying their properties correlatively. However, SIMS images are prone to artefacts induced by the sample topography as the sputtering yield changes with respect to the primary ion beam incidence angle. Knowing the exact sample topography is crucial to understand SIMS images. Moreover, using non-reactive primary ions (Ne+) produced in a gas field ion source (GFIS) allows to image in SIMS with an excellent lateral resolution of < 20 nm, but it comes with a lower ionization probability compared to reactive sources (e.g., Cs+) and due to small probe sizes only a limited number of atoms are sputtered, resulting in low signal statistics. This thesis focused first on taking advantage of high-resolution in-situ EM-SIMS platforms for applications in specific research fields and to go beyond traditional correlative 2D imaging workflows by developing adapted methodologies for 3D surface reconstruction correlated with SIMS (3D + 1). Applying this method to soil microaggregates and sediments allowed not only to enhance their visualization but also to acquire a deeper understanding of materials’ intrinsic transformation processes, in particular the organic carbon sequestration in soil biogeochemistry. To gain knowledge of the influence of the topography on surface sputtering, using model samples the change of the sputtering yield under light ion bombardment (He+, Ne+) for different ranges of incidence angles of the primary ion beam was studied experimentally. This data was compared to Monte Carlo simulation results and fitted with existing sputtering model functions. We showed thus that these models developed and studied for heavier ions (Ar+, Cs+) are also applicable to light ions (He+, Ne+). Additionally, an algorithm used to correct SIMS images with respect to topographical artefacts resulting from local changes of the sputtering yield was presented. Finally, the contribution of oxygen on positive SI yields was studied for non-reactive primary ions (25 keV Ne+) under high primary ion current densities (up to 10^20 ions/(cm2 ∙ s)). It was shown that in order to maximize and maintain a high ionization probability oxygen needs to be provided continuously to the surface. Secondary ion signal enhancement of up to three orders of magnitude were achieved for silicon, opening the doors for SIMS imaging at both highest spatial resolution and high sensitivity

    Neural and motor basis of inter-individual interactions

    Get PDF
    The goal of my Ph.D. work was to investigate the behavioral markers and the brain activities responsible for the emergence of sensorimotor communication. Sensorimotor communication can be defined as a form of communication consisting into flexible exchanges based on bodily signals, in order to increase the efficiency of the inter-individual coordination. For instance, a soccer player carving his movements to inform another player about his intention. This form of interaction is highly dependent of the motor system and the ability to produce appropriate movements but also of the ability of the partner to decode these cues. To tackle these facets of human social interaction, we approached the complexity of the problem by splitting my research activities into two separate lines of research. First, we pursued the examination of motor-based humans\u2019 capability to perceive and \u201cread\u201d other\u2019s behaviors in focusing on single-subject experiment. The discovery of mirror neurons in monkey premotor cortex in the early nineties (di Pellegrino et al. 1992) motivated a number of human studies on this topic (Rizzolatti and Craighero 2004). The critical finding was that some ventral premotor neurons are engaged during visual presentation of actions performed by conspecifics. More importantly, those neurons were shown to encode also the actual execution of similar actions (i.e. irrespective of who the acting individual is). This phenomenon has been highly investigated in humans by using cortical and cortico-spinal measures (for review see, fMRI: Molenberghs, Cunnington, and Mattingley 2012; TMS: Naish et al. 2014; EEG: Pineda 2008). During single pulse TMS (over the primary motor cortex), the amplitude of motor evoked potentials (MEPs) provides an index of corticospinal recruitment. During action observation the modulation of this index follow the expected changes during action execution (Fadiga et al. 1995). However, dozens of studies have been published on this topic and revealed important inconsistencies. For instance, MEPs has been shown to be dependent on observed low-level motor features (e.g. kinematic features or electromyography temporal coupling; Gangitano, Mottaghy, and Pascual-Leone 2001; Borroni et al. 2005; Cavallo et al. 2012) as well as high level movement properties (e.g. action goals; Cattaneo et al. 2009; Cattaneo et al. 2013). Furthermore, MEPs modulations do not seem to be related to the observed effectors (Borroni and Baldissera 2008; Finisguerra et al. 2015; Senna, Bolognini, and Maravita 2014), suggesting their independence from low-level movement features. These contradictions call for new paradigms. Our starting hypothesis here is that the organization and function of the mirror mechanism should follow that of the motor system during action execution. Hence, we derived three action observation protocols from classical motor control theories: 1) The first study was motivated by the fact that motor redundancy in action execution do not allow the presence of a one-to-one mapping between (single) muscle activation and action goals. Based on that, we showed that the effect of action observation (observation of an actor performing a power versus a precision grasp) are variable at the single muscle level (MEPs; motor evoked potentials) but robust when evaluating the kinematic of TMS-evoked movements. Considering that movements are based on the coordination of multiple muscle activations (muscular synergies), MEPs may represent a partial picture of the real corticospinal activation. Inversely, movement kinematics is both the final functional byproduct of muscles coordination and the sole visual feedback that can be extracted from action observation (i.e. muscle recruitment is not visible). We conclude that TMS-evoked kinematics may be more reliable in representing the state of the motor system during action observation. 2) In the second study, we exploited the inter-subject variability inherent to everyday whole-body human actions, to evaluate the link between individual motor signatures (or motor styles) and other\u2019s action perception. We showed no group-level effect but a robust correlation between the individual motor signature recorded during action execution and the subsequent modulations of corticospinal excitability during action observation. However, results were at odds with a strict version of the direct matching hypothesis that would suggest the opposite pattern. In fact, the more the actor\u2019s movement was similar to the observer\u2019s individual motor signature, the smaller was the MEPs amplitude, and vice versa. These results conform to the predictive coding hypothesis, suggesting that during AO, the motor system compares our own way of doing the action (individual motor signature) with the action displayed on the screen (actor\u2019s movement). 3) In the third study, we investigated the neural mechanisms underlying the visual perception of action mistakes. According to a strict version of the direct matching hypothesis, the observer should potentially reproduce the neural activation present during the actual execution of action errors (van Schie et al. 2004). Here, instead of observing an increase of cortical inhibition, we showed an early (120 ms) decrease of intracortical inhibition (short intracortical inhibition) when a mismatch was present between the observed action (erroneous) and the observer\u2019s expectation. As proposed by the predictive coding framework, the motor system may be involved in the generation of an error signal potentially relying on an early decrease of intracortical inhibition within the corticomotor system. The second line of research aimed at the investigation of how sensorimotor communication flows between agents engaged in a complementary action coordination task. In this regard, measures of interest where related to muscle activity and/or kinematics as the recording of TMS-related indexes would be too complicated in a joint-action scenario. 1) In the first study, we exploited the known phenomenon of Anticipatory Postural Adjustments (APAs). APAs refers to postural adjustments made in anticipation of a self- or externally-generated disturbance in order to cope for the predicted perturbation and stabilize the current posture. Here we examined how observing someone else lifting an object we hold can affect our own anticipatory postural adjustments of the arm. We showed that the visual information alone (joint action condition), in the absence of efference copy (present only when the subject is unloading by himself the object situated on his hand), were not sufficient to fully deploy the needed anticipatory muscular activations. Rather, action observation elicited a dampened APA response that is later augmented by the arrival of tactile congruent feedback. 2) In a second study, we recorded the kinematic of orchestra musicians (one conductor and two lines of violinists). A manipulation was added to perturb the normal flow of information conveyed by the visual channel. The first line of violinist where rotated 180\ub0, and thus faced the second line. Several techniques were used to extract inter-group (Granger Causality method) and intra-group synchronization (PCA for musicians and autoregression for conductors). The analyses were directed to two kinematic features, hand and head movements, which are central for functionally different action. The hand is essential for instrumental actions, whereas head movements encode ancillary expressive actions. During the perturbation, we observed a complete reshaping of the whole patterns of communication going in the direction of a distribution of the leadership between conductor and violinists, especially for what regards head movements. In fact, in the perturbed condition, the second line acts as an informational hub connecting the first line to the conductor they no longer can see. This study evidences different forms of communications (coordination versus synchronization) flowing via different channels (ancillary versus instrumental) with different time-scales

    Numerical modelling for the hydrothermal activity & habitability of Mars

    Get PDF
    Modern space and planetary explorations are enthusiastically searching for extraterrestrial biosignatures, and even intelligence in our cosmic neighbourhood. Mars is the epicentre of planetary research and astrobiology, as during ancient geological periods, the Red Planet should have had a thicker atmosphere, and exhibits evidence for ancient aqueous, volcanic and hydrothermal activity. Such physical processes that persist on a planetary body through geological time increase the probability of the emergence and evolution of antediluvian microbial species. However, present-day Mars is a cold and arid desert. So, could the Red Planet host evidence of extinct or/and even extant microbial life? To contribute towards deciphering this mystery, this PhD research focuses on determining the thermodynamic and hydrological evolution, and subsequent habitability of ancient hydrous environments on Mars. Martian habitability, especially during the planet’s ancient geological history, has not been decisively established yet. Moreover, quantitative analyses and models for the ancient or present bioenergetic potential on Mars are scarce. Water – rock interactions enduring in longlived hydrothermal settings on Earth yield appreciable quantities of chemical nutrients that support microbial species under hydrothermal conditions. Through this perspective, the habitability of simulated Martian hydrothermal systems deserves to be computed and analysed. This PhD research explores simulated volcanogenic and impact-induced hydrodynamics on Mars, and the astrobiological potential of such ancient or more recent Martian aqueous environments via computational scenarios. High-resolution numerical simulations for the aqueous circulation and thermodynamics in a variety of putative Martian hydrothermal systems have been constructed and interpreted. Rock permeability, porosity, temperature, pressure, enthalpy, heat capacity, and thermal conductivity comprise governing physical parameters for the duration and mechanics of the hydrothermal cycle in each simulation. Therefore, the presented thermodynamic simulations explore thoroughly the evolution and duration of putative impact-induced or magmatic-induced hydrological systems on Mars from the pre-Noachian to the late Amazonian. The thermodynamic results of these models are then used as input conditions in further computations for Martian water – basaltic rock reaction pathways and their subsequent bioenergetic yield (habitability). Eventually, quantitative habitability assessments are conducted based on the energy – chemical nutrient availability and on the thermal constraints that cumulatively render these environments habitable or uninhabitable for hypothetical lithotrophic microbial species in the Martian subsurface. In parallel, NWA 8159 (shergottite) and Lafayette (nakhlite) Martian meteorite samples were examined through Scanning Electron Microscopy (SEM) analysis to identify their Martian mineralogies, and detect alteration phases – fluid compositions that have affected these basaltic rocks on Mars, or on Earth due to weathering processes after their fall. Petrological analyses provided additional insights into the geochemical composition and evolution of these Martian rocks. Furthermore, image processing on acquired SEM-BSE montage maps of the NWA 8159 and Lafayette samples revealed the porosity of these Martian rocks, and subsequently constrained and enhanced the hydromechanic and habitability models of this PhD research. The hydrothermal and habitability simulations indicate that the Martian basaltic subsurface could have supported hydrogenotrophic microbial life for periods ranging from 0.1 Myr to 3 Myr under preserved hydrothermal conditions. The modelling results additionally suggest that deeper basaltic domains (subsurface depth ≥ 1.5 km) in large impact craters (100-, 200-km diameters) or intrusive volcanic rock settings, could comprise the most promising sites for astrobiological research. The ideal habitable thermal range in which nutrients, and specifically H2, are released in appreciable amounts through ongoing water – rock reactions is from 50 °C to 121 °C. Under such hydrothermal conditions, the Martian subsurface is modelled able to support the survival and growth criteria of hydrogenotrophic life. However, aqueous circulation and geochemical reactions should endure for an average minimum period of 120 Kyr to support microbial growth, and conceivably, the microbial colonization of the Martian subsurface. The numerical simulations of this research support that cold aqueous flows and short-induration hydrological systems on Mars are unable to support the survival of potential microbial species for a period ≥ 2 Kyr. Finally, even in the most optimistic thermodynamic scenarios for Martian habitability, microbial species in the deep Martian subsurface cannot be supported for a period longer than 1 – 2 Myr, after hydrothermal activity has halted. This indicates that any potentially inhabited environments on Mars could have supported microbial life only for an average maximum period of 3 – 4 Myr. Conclusively, planetary environments beyond Earth that may have been hosting hydrothermal or aqueous activity continuously for Myr or even Gyr (i.e.: the Jovian and Kronian moons, beneath their icy crusts) comprise the most habitable extraterrestrial niches of the Solar System, and promising sites for astrobiological findings

    Support of resource-aware vertical handovers in WLAN hotspots

    Get PDF
    Endgeräte wie Smartphones oder Tablets bieten häufig eine Vielfalt drahtloser Zugänge zum Internet an. Üblicherweise schließt dies die 802.11 WLANs und auch Technologien drahtloser Weitverkehrsnetze (WWANs) aus dem Bereich LTE oder WiMAX ein. Aufgrund dieser Optionen haben sich die Endanwender daran gewöhnt, überall und zu jeder Zeit auf ihre Internetdienste zuzugreifen. Damit hat auch der Datenverkehr pro Anwender zugenommen, was eine Herausforderung insbesondere für die Betreiber von WWANs ist. Soweit verfügbar, favorisieren Endanwender heutzutage eher einen drahtlosen Zugang zum Internet über WLANs als über WWANs. Des Weiteren haben die 3GPP-Standardisierungsgremien Ansätze erarbeitet, die zusätzlich Verkehr aus WWANs in Netze mit geringerer Abdeckung wie WLAN- oder Femto-Zellen abgeben. Solche Ansätze werden auch als "Traffic Offloading" bezeichnet und haben das Ziel, die WWANs zu entlasten. Dabei werden jedoch eher einfache Strategien verfolgt, die auf der Nutzung zusätzlicher Kapazitäten heterogener Netze beruhen und dann angewendet werden, wenn ein alternatives Zugangsnetz für ein Endgerät verfügbar ist. Im Rahmen dieser Arbeit zeigen wir Gewinne auf, die entstehen, wenn man die Auswahl der Endgeräte für ein WLAN-Netz stattdessen auf Basis der von ihnen belegten Ressourcen durchführt. In diesem Kontext schlagen wir vor, Geräte mit stark negativem Einfluss auf die WLAN-Kapazität wieder zurück in das WWAN zu reichen, was wir als "Onloading" bezeichnen. Ein solches "Onloading" zieht Herausforderungen in unterschiedlichen Richtungen mit sich. Die fortschreitende Miniaturisierung hat in den letzten Jahren zu dem Trend geführt, die Anzahl der Netzwerkkarten (NICs) in Endgeräten zu reduzieren. Wir bezeichnen eine NIC als multimodal, wenn sie mehrere Funktechnologien unterstützt, aber zu einem bestimmten Zeitpunkt immer nur eine davon genutzt werden kann. Deswegen stellt für eine multimodale NIC das "Onloading" während einer laufenden Verbindung eine Herausforderung dar. Wir schlagen einen Ansatz vor, der vorbereitende Mechanismen für ein "Onloading" als auch eine laufende Verbindung im WLAN über eine solche NIC ermöglicht. Des Weiteren ist es wichtig, in einem WLAN Hotspot zu entscheiden, welche Geräte einen negativen Einfluss auf die Kapazität des Netzes haben. Dafür haben wir eine Metrik entwickelt, die eine Entscheidungsgrundlage für das Onloading bildet. Diese Metrik basiert rein auf einer Beobachtung des Netzes und seiner Geräte, ermöglicht jedoch keine Entscheidung für sich neu assoziierende Geräte im WLAN. Erschwerend kommt hinzu, dass viele Eigenschaften der NICs durch herstellerabhängige Implementierungen geprägt werden. Solche Algorithmen bieten eine zusätzliche Herausforderung, da ihre internen Abläufe üblicherweise unbekannt sind. Ein bekanntes Beispiel für solche Algorithmen stellt die Anpassung der WLAN-Link-Datenraten dar. Diese Algorithmen wählen die jeweiligen Modulations- und Kodierungsschemata (MCSs) für die drahtlosen Übertragungen aus. Robuste MCSs resultieren dabei in geringere Link-Datenraten und haben somit einen starken Einfluss auf die Kapazität einer WLAN-Zelle. Aus diesem Grund fokussieren wir uns auf eine Abschätzung der Datenratenwahl eines Endgerätes. Damit lassen sich im Vorfeld Aussagen treffen, ob ein Gerät starken Einfluss auf die WLAN-Kapazität haben wird, so dass es für ein "Onloading" in Frage kommt.End-user devices such as smart phones and tablets have become very popular as they offer a variety of wireless Internet accesses ranging from the WLAN standards to WWAN technologies such as LTE or even WiMAX. Due to these different wireless access options and new emerging applications—e.g., from the areas of video streaming, social networks, as well as Internet clouds—people are increasingly connecting to the Internet with their de- vices while being on the move. In line with this, the number of devices as well as the traffic demand of end users have been reported to increase rapidly over the last years which imposes a strong challenge especially for the operators of WWANs. Thereby, end users frequently tend to use settings that favor a connectivity to the Internet whenever possible rather over WLAN than over WWAN access. Further, the cellular standardization bodies of the 3GPP envision solutions to hand over on-going wireless sessions from cellular to other small cell accesses such as WLANs or femto cells. This is also known as traffic offloading essentially freeing capacity in terms of users with a certain service in the cellular accesses. Nevertheless this offloading follows a rather simple strategy to utilize additional capacity of heterogeneous accesses such as WLANs whenever being available for a given device. This thesis shows that stronger gains can be expected if the selection of devices to be served in WLANs is conducted in a resource-aware fashion including an evaluation of the WLAN traffic in terms of the channel occupation time and MAC overhead as result of contention, interference, and fluctuating channels. In this context, this thesis envisions to onload unfavorable devices negatively affecting the WLAN capacity back to WWAN accesses. A support of such an onloading imposes challenges in different dimensions. From the hardware design of devices, there is a strong trend to limit the number of separate network interface cards (NICs) due to space and cost issues. We refer to a multi-mode NIC if it covers multiple technologies, while at a given time only access to one technology is possible. Thus, smoothly onloading a device with such a NIC is by far not trivial. We present an approach that conducts handover preparation mechanisms, while also allowing a continuous WLAN communication over a multi-mode NIC. Further, it is by far not trivial to judge which subset of associated devices is negatively affecting the capacity of a WLAN hotspot. Thus, a careful evaluation of devices regarding a selection for an onloading back to WWAN accesses imposes a challenge yet. In this direction, we present a performance metric that identifies devices degrading the WLAN capacity. While our performance metric tackles a reactive selection, it falls short to support a predictive evaluation, e.g., of devices which just joined the WLAN cell. Even worse, proprietary algorithms inside a WLAN stack impose a severe challenge as their internal routines are usually not conveyed via typical management interfaces. A well-known example for this category of algorithms are the link data rate adaptation schemes, with which WLAN devices adjust the modulation and coding scheme (MCS) for their transmissions. As MCSs resulting in low link data rates may specifically degrade the capacity of a WLAN cell, we focus on an estimation regarding the data rate selection of a device as a third contribution of this thesis. This estimation enables to select devices that will likely degrade the capacity of the WLAN hotspot for an onloading in advance

    Augmented Reality

    Get PDF
    Augmented Reality (AR) is a natural development from virtual reality (VR), which was developed several decades earlier. AR complements VR in many ways. Due to the advantages of the user being able to see both the real and virtual objects simultaneously, AR is far more intuitive, but it's not completely detached from human factors and other restrictions. AR doesn't consume as much time and effort in the applications because it's not required to construct the entire virtual scene and the environment. In this book, several new and emerging application areas of AR are presented and divided into three sections. The first section contains applications in outdoor and mobile AR, such as construction, restoration, security and surveillance. The second section deals with AR in medical, biological, and human bodies. The third and final section contains a number of new and useful applications in daily living and learning

    Autonomous Component Carrier Selection for 4G Femtocells

    Get PDF

    Proceedings of the Third Edition of the Annual Conference on Wireless On-demand Network Systems and Services (WONS 2006)

    Get PDF
    Ce fichier regroupe en un seul documents l'ensemble des articles accéptés pour la conférences WONS2006/http://citi.insa-lyon.fr/wons2006/index.htmlThis year, 56 papers were submitted. From the Open Call submissions we accepted 16 papers as full papers (up to 12 pages) and 8 papers as short papers (up to 6 pages). All the accepted papers will be presented orally in the Workshop sessions. More precisely, the selected papers have been organized in 7 session: Channel access and scheduling, Energy-aware Protocols, QoS in Mobile Ad-Hoc networks, Multihop Performance Issues, Wireless Internet, Applications and finally Security Issues. The papers (and authors) come from all parts of the world, confirming the international stature of this Workshop. The majority of the contributions are from Europe (France, Germany, Greece, Italy, Netherlands, Norway, Switzerland, UK). However, a significant number is from Australia, Brazil, Canada, Iran, Korea and USA. The proceedings also include two invited papers. We take this opportunity to thank all the authors who submitted their papers to WONS 2006. You helped make this event again a success

    Uncertainty quantification for Tokamak experimental analysis and reactor design

    Get PDF
    Society faces major challenges to ensuring the future sustainability of energy generation in the presence of climate change. The world is facing the need for a rapid decarbonisation of energy generation technologies. Current alternatives to satisfy the worlds growing energy demand, particularly wind and solar energy, suffer from low energy density generation. That is, the present options require large areas of land and consistent environmental conditions to reliably generate energy. Thermonuclear fusion promises an alternative solution that is both carbon neutral and offer high density generation with no dependence on the external environment. To realise this opportunity there are several technical challenges that must first be overcome. This is the enduring focus of nuclear fusion research. One of the main outstanding challenges to the realisation of thermonuclear fusion for energy generation is related to the power handling capacity of plasma facing components in fusion reactors. This challenge has two main components. The first is finding materials that can withstand the conditions inside fusion reactors. The second is to better understand those conditions to enhance the predictive capability of models that can be used to design future plasma facing components. The work of this thesis fits within that second class. Simplified edge physics models can be used to predict the power deposition of plasma facing components. These models are, however, generally deterministic. Yet the power deposition experienced by plasma facing components experiences significant stochastic variability. There is also a great deal of uncertainty in the characterisation of those plasma facing components power deposition characteristics. Several approaches to deal with uncertainties and to characterise the stochastic variability relating to the characterisation of power deposition in plasma facing components have been explored. This includes a full Bayesian analysis of uncertain parameters in deterministic simplified edge physics models. A novel approach is proposed to disentangle the effect of short duration transient edge localised modes and the steady state escape of power into the edge layer. This approach, as will be explored within the thesis, can be used to enhance understanding of experimental data and to predict power deposition on plasma facing components in future fusion devices. Finally a full stochastic model for the prediction of power deposition in the Joint European Torus is explored. This model includes the effect of the steady state escape of energised particles into the edge of the fusion plasma, the effect of transient events, the stochastic properties of each of these phenomena, and a model for the temporal dependence of these phenomena during a discharge

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    International Conference on Civil Infrastructure and Construction (CIC 2020)

    Get PDF
    This is the proceedings of the CIC 2020 Conference, which was held under the patronage of His Excellency Sheikh Khalid bin Khalifa bin Abdulaziz Al Thani in Doha, Qatar from 2 to 5 February 2020. The goal of the conference was to provide a platform to discuss next-generation infrastructure and its construction among key players such as researchers, industry professionals and leaders, local government agencies, clients, construction contractors and policymakers. The conference gathered industry and academia to disseminate their research and field experiences in multiple areas of civil engineering. It was also a unique opportunity for companies and organizations to show the most recent advances in the field of civil infrastructure and construction. The conference covered a wide range of timely topics that address the needs of the construction industry all over the world and particularly in Qatar. All papers were peer reviewed by experts in their field and edited for publication. The conference accepted a total number of 127 papers submitted by authors from five different continents under the following four themes: Theme 1: Construction Management and Process Theme 2: Materials and Transportation Engineering Theme 3: Geotechnical, Environmental, and Geo-environmental Engineering Theme 4: Sustainability, Renovation, and Monitoring of Civil InfrastructureThe list of the Sponsors are listed at page 1
    corecore